
1

1

Anchor Modeling
I N T H E D A T A W A R E H O U S E

_tÜá e≠ÇÇuùv~

Did you know that some of the earliest prerequisites for data warehousing were

set over 2500 years ago.

It is called an anchor model since the anchors tie down a number of attributes

(see picture above).

All EER-diagrams have been made with Graphviz.

All cats are drawn by the author, Lars Rönnbäck.

2

2
You can never step into
the same river twice.

2

The great greek philosopher Heraclitus said ”You can never step into the same

river twice”.

What he meant by that is that everything is changing. The next time you step into

the river other waters are flowing by.

Likewise the environment surrounding a data warehouse is in constant change

and whenever you revisit them you have to adapt to these changes.

Image painted by Henrik ter Bruggen courtsey of Wikipedia Commons (public

domain).

3

3

Five Essential Criteria

• A future-proof data warehouse must at
least fulfill:
–Value

–Maintainability

–Usability

–Performance

–Flexibility

Fail in one and there will be consequences

Value – most important, even a very poorly designed data warehouse can survive

as long as it is providing good business value.

If you fail in providing value, the warehouse will be viewed as a money sink and

may be cancelled altogether.

Maintainability – you should be able to answer the question: How is the

warehouse feeling today? Could be healthy, could be ill! Detect trends, e g in

loading times.

Usability – must be simple and accessible to the end users. Should not take a

university degree in computer science to get the information you want.

Performance – demands may vary depending on the user. Analysts may be

satisfied waiting 10 minutes for a query, while users looking at dynamical reports

may require sub second response times.

Finally flexibility, which will be the main subject of todays presentation.

4

4

Flexibility in Anchor Models

• Resilient to changes in the environment
surrounding the data warehouse

• The model simplifies

– historization

– null-handling

– orphans

– separation of concerns

– prototyping

• Achieves performance gains

A large change outside

the data warehouse

should result in a small

change within.

Anchor modeling is nothing new. The ideas and theories have been around since

the 70ies, but has only recently been adopted by us and used in practice.

5

5

Background – 6NF

• A table is in sixth normal form if
and only if it satisfies no non-trivial
join dependencies at all.

• C. J. Date, Darwen, and Lorentzos

–Temporal Data and the Relational Model

• Esteban Zimányi

–Temporal Universal Quantification

colour cat weight

Note that sixth normal form is not the same as Domain/Key normal form,

although stated so in some resources online.

Basically 6NF puts each non-key attribute in a separate relation. A 6NF table is a

key plus at most one other column.

Full names: Christopher J. Date, Hugh Darwen, Nikos A. Lorentzos

In the 70’s most academic people were investigating the definitions and

algorithms for the normal forms of relations. Papers on higher normal forms were

published rapidly, until someone wrote a paper claiming he had found the

infinity:th normal form. Arguing that it did not make any sense to pursue higher

normal forms, the academia settled on the fact that forms higher than 3rd or 4th

would not have practical significance.

The cat has two attributes; colour and weight. It would be natural to assume that

its weight will change over time, whereas the colour will not. Unless you decide to

dye it for some reason. In the data warehouse we typically want to keep a history

over such changes, hence the keyword ’Temporal’ used in the titles.

6

6

Background – EER

• The entity-relationship model
adopts the natural view that the real
world consists of entities and
relationships.

• Peter P. Chen

–Towards a Unified View of Data

• Enhanced entities adds semantic
modeling concepts such as typing

cat dogenemy

[arch]

Has a wider scope than just databases, is used throughout all of Information

Technology.

Was actually developed alongside relational models in the 70’s.

Based on set theory and relation theory it can be used as a framework from

which the relational data model can be derived.

The relation enemy can be typed, indicating that among all dogs that a certain cat

has as enemies, one is the [arch]-enemy.

A relation may also change over time. Let’s say the cat and dog started out as

enemies, but later became friends. Again, we want to be able to track the history

of how the relation has evolved in the data warehouse.

7

7

Anchor modeling

• Almost 6NF + EER
–a practical approach rather than purist

• Three table types (ER) are sufficient
–Anchors

–Attributes

–Ties

• Using a fourth table type (EER) we can
simplify models
–Knots

All modeling problems can be solved using only three table types, but that will

require more tables in an already table-excessive modeling technique.

This is why we turn to the enhanced-ER, which will help us reduce models by

tieing together tables of the three types into a fourth type; the knot.

It is a kind of multi-purpose table table, although it comes with the price of some

limitations.

8

8

Anchor modeling in practice

• The originator is Olle Regardt ()
–started using anchor models in 2002

based on experiences with informational
models

• Formalization by Lars Rönnbäck
–white papers late 2007/early 2008

• Large scale implementations in use
leading insurance company

largest bus logistics company

4TB data at the leading insurance company. Three data warehouses and one

master data system.

Informational models foremost related to the insurance industry.

9

9

Anchors

• Contents of an anchor

–The surrogate key of the
entity

–Metacolumns

• Batch information

• File information

Metacolumns should answer the questions: WHEN? WHERE? HOW?

The surrogate key is a technically generated identity based on the natural key.

What is the natural key for a cat? Perhaps its name + birthdate. This would be

the base when generating surrogate keys such that every unique combination of

a name and a birthdate would yield a new key.

10

10

Attributes

• Contents of an attribute

–The foreign key of the
belonging anchor

–An attribute value

–Historization columns

–Metacolumns

If we have a cat named ’Kitty’ born in 2005 that is black, then the colour black is

an attribute. We would keep it in its own table with a reference to the ’Kitty’-key.

11

11

Ties

• Contents of a tie

–The foreign keys of the
related anchors

• which may be an
n-tuple

–Historization columns

–Metacolumns

A tie may tie together an arbitrary number of anchors.

Some cats and dogs may have changed their relation several times. Friend,

enemy, friend, enemy, friend...

12

12

Historization

• Zero Update Strategy [ZeUS]
–Only insert/select for normal use

–Deletes only to revert faulty data

• Consequences
–Only FromDate and never ToDate

–Anchors are eternal

Weight

FromDate

105g

2005-02-13(birth)

4765g

2007-10-01

Later FromDate replaces earlier version, so the latest FromDate is the latest

version.

Eternal in the effect that everything else might change, but not the identity.

When the kitten was born it weighed 105 grams. We record this in the data

warehouse. Later on (maybe much later, seeing how large it has become) we

weigh the cat again and record the weight in the data warehouse. We do not

update the existing data. Instead we insert a new row, with a later FromDate. The

latest FromDate is the lastest information we have about the cat. It is the current

version of the cat.

13

13

A sample model

• Anchors
– PA_Part

– AG_Agreement

– EV_Event

• Ties
– AGPA_Agreement_Part

– EVAG_Event_Agreement

• Attributes
– PANAM_PartName

– PAIDY_PartIdentity

– AGNUM_AgreementNumber

– EVVAL_EventValue

– EVDAT_EventDate

We will now move away from the cats and dogs and into a customer case

example from the insurance industry.

This is a LOGICAL MODEL, represented as an entity-relationship diagram. The

symbols used for anchors, attributes and ties are the standard ones used when

creating ER-diagrams.

As you can see, there’s a hint of a naming convention if you look at the names of

the different tables.

14

14

Naming conventions

• Anchors have a two letter prefix
– AG_Agreement

• Attributes have a five letter prefix
– AGNUM_AgreementNumber

– first two letters taken from anchor

• Ties have a four (or 2n) letter prefix
– AGPA_Agreement_Part

– letters taken from adjoining anchors

• Avoids bad models
– ’cause you’ll get in trouble naming your objects

Note that ties have underscore between the anchor names.

Prefixes must be unique in the model.

15

15

An extended sample model

– PAROPA_Part_Role_Part

– RO_Role

– RONAM_RoleName

– EVVT_Event_ValueType

– VT_ValueType

– VTTYP_ValueTypeName

This is what the model would look like if we were ’purists’.

Every event value has a currency, represented by the value type. A ”business

rule” guarantees that every value must have a type.

16

16

Knots

• Contents of a knot

–The surrogate key for the
knotted entity

–An attribute value

• representing the type of the
knot

–Metacolumns

• Uses a three letter prefix

The symbol for a knot table does not exist in standard ER notation. However, the

squarish shape hints that it is something of a cross between an anchor and an

attribute.

Note that a knot:

-is fundamentally a collapsed anchor

-may never change over time

-is often used to ”type” a relation or attribute

-can also be used for domain values or state tables (i e if something is to be

marked as deleted)

17

17

A simplified sample model

• Anchors, attributes
and ties can be tied
into knot tables

• Every EVVAL has a
VTT

• Every PAPA has a
ROL

Note that normalization is preserved.

18

18

Modeling practices

• Find the business entities [anchors]

• Generalize [anchors, ties]

• Balance and specialize [attributes, knots]

• Historize [attributes]

• Find relations [ties, knots]

• Historize [ties]

This is a general approach on where to start and what steps to take when you

are creating an anchor model.

An example of a generalization is:

To have FinancialEvent as anchor with typing, rather than actual, budget,

forecast values as their own anchors.

Avoid when modeling relations: fan traps, chasm traps.

19

19

Common Questions

• There is no support for multiple
assignment statements in SQL. How
can we insert data into all of these
tables at once?

• Will not the SQL needed to query the
implemented model be extremely
complex?

• The performance must be horrible with
all the joins needed!

Let us look at how we have answered these questions!

20

20

Stream based ETL-tools

We can insert

data into all of

these tables at

once!

The popular ETL tools available today all tend to be stream based rather than set

based, like SQL.

We can, with only one scan of the source table, insert data into as many tables

we want simultaneously. Loading performance is not an issue.

Image taken from SQL Server Integration Services.

The surrogate key component is custom made and exchanges information with

an identity management service.

Wrapping the package in a transaction to ensure consistency

21

21

Identity Management

• Keys as globally unique identifiers

– “Global” is more than local to the DW

The EIMS is a service that keeps track of all entity identities in your organization -

a master key storage.

Even if you have no such service, it is better to create locally unique keys to your

data warehouse in the ETL process.

Surrogate keys are never propagated to the presentation layer (may be

denormalized).

22

22

Physical implementation

No foreign key relations?

This is a part of the example implemeted as a physical model in SQL Server

2005.

Note that all tables reference the metadata table (for maintainability purposes).

Why are there no relations in the picture? Because foreign key constraints do not

belong in the data warehouse (performance hogs). The ETL process should

ensure referential integrity. Same goes for primary keys. We are further

generating identities in the ETL process rather than letting the warehouse do this.

The anchor is the keeper of the cardinality.

We ensure later that no duplicates can be entered into any tables by having

unique constraints (primary key).

23

23

Collapsing views – regular

create view vAG_Agreement as

select

AG.AG_ID,

AGNUM.AGNUM_Number,

AGNUM.AGNUM_FromDate

from

AG_Agreement AG

left join

AGNUM_AgreementNumber AGNUM

on

AGNUM.AG_ID = AG.AG_ID;

Note that collapsed views can/will include NULL values.

24

24

Collapsing views – latest

create view lAG_Agreement as

select

AG.AG_ID,

AGNUM.AGNUM_Number

from

AG_Agreement AG

left join

AGNUM_AgreementNumber AGNUM

on

AGNUM.AG_ID = AG.AG_ID

and

AGNUM.AGNUM_FromDate = (

select

max(AGNUM_FromDate)

from

AGNUM_AgreementNumber sub

where

sub.AG_ID = AG.AG_ID)

Important that we use AG.AG_ID in the join condition for the subselect and not

AGNUM.AG_ID, since the latter will result in a self-join.

25

25

Collapsing views – knotted

left join

AGPA_Agreement_Part AGPA

on

AGPA.AG_ID = AG.AG_ID

and

AGPA.AGPA_FromDate = (

select

max(AGPA_FromDate)

from

AGPA_Agreement_Part sub

where

sub.AG_ID = AG.AG_ID)

• Incorporating the tie into the view

PA_ID from the EER can be added to the latest view if the circumstances allow, i

e there is a one to many relation.

26

26

Implemented views

Looks like third normal form!

The SQL need not be

any more complicated

than when using other

modeling techniques!

All we have to do is make sure we get good performance when querying the

views.

27

27

Creating an anchor

create table AG_Agreement (

AG_ID bigint not null,

_metadata int not null,

constraint pkAG primary key (

AG_ID asc

)

);

Will also result in a clustered index
over the primary key.

In data warehousing scanning large portions of tables is common practice.

A clustered index is an ordering of the data on disk, implying that scanning can

be done sequentially, without ”disk trashing”.

Bigint ID:s from a volume perspective. Total number of rows in all tables larger

than an int can hold.

28

28

Creating an attribute

create table AGNUM_AgreementNumber (

AG_ID bigint not null,

AGNUM_FromDate smalldatetime not null,

AGNUM_Number int not null,

_metadata int not null,

constraint pkAGNUM primary key (

AG_ID asc,

AGNUM_FromDate desc

)

);

1|2004-02-13 20:08

2|2007-01-01 13:54

2|2006-08-20 15:15

2|2002-10-15 13:20

2|2001-01-02 01:18

3|2007-09-19 08:00

The physical order on disk will be aligned
so that the latest record always is the first
row for every id.

We want to align the clustered indexes with eachother, so joining can be done as

smoothly as possible.

The FromDate order is reversed, since we are likely to be interested in the latest

versions more often than the earliest ones.

29

29

Creating a tie

create table AGPA_Agreement_Part (

AG_ID bigint not null,

AGPA_FromDate smalldatetime not null,

PA_ID bigint not null,

_metadata int not null,

constraint pkAGPA primary key (

AG_ID asc,

AGPA_FromDate desc

)

);

Assumes one-to-many relation between agreements and parts.

For a many-to-many tie, or a tie that ties together several anchors the primary

key would have to be extended with additional foreign keys to ensure

uniqueness.

30

30

A sample query

select

lPA.PANAM_Name,

count(distinct lAG.AGNUM_Number)

from

lPA_Part lPA

join

lAG_Agreement lAG

on

lPA.PA_ID = lAG.AG_ID

group by

lPA.PANAM_Name

This is more true to the type of queries you would see in a data warehouse.

Will produce table scans.

Does not use all attributes.

31

31

Actual execution plan

The performance
will be good and
sometimes even
better than with
other models!

Note that it will not bring in the table PAIDY_PartIdentity, even though it is joined

into the view.

32

32

Optimal execution plan

• Would involve only three tables

– AGNUM_AgreementNumber

– PANAM_PartName

– AGPA_Agreement_Part

• Since we are starting with the anchors
in the collapsing views and left joining
we have prohibited the optimizer from
figuring out the best plan.

The query optimizer cannot figure this out since we are implicitly disregarding the

cardinality of the anchors.

33

33

Temporal functions

create function fAG_Agreement (@date smalldatetime)

returns table return select

AG.AG_ID,

(select top 1

PA_ID

from

AGPA_Agreement_Part AGPA

where

AGPA.AG_ID = AG.AG_ID

and

AGPA_FromDate <= @date

order by

AGPA_FromDate desc) as PA_ID,

from

AG_Agreement AG

There is no performance difference between using top or max – they both result

in the same execution plan.

Note that this might differ depending on your database vendor, so please

examine your execution plans to find the optimal way to do temporal queries.

34

34

An advanced sample query

select

fPA.PANAM_Name,

count(distinct fAG.AGNUM_Number)

from

fPA_Part('2007-01-01') fPA

join

fAG_Agreement('2006-01-01') fAG

on

fPA.PA_ID = fAG.AG_ID

group by

fPA.PANAM_Name

What agreements did todays parts have in 2006?

This has the same query plan as seen before, however, now the top sorting will

have to look further for each key, since the specified date does not necessary

have to be larger than the latest one.

35

35

The only challenge?

• To ensure business rules in the
database we would need complicated
constraint logic that decreases the
performance

• Leaving it to the ETL means that rules
are found outside of the database

• Other modeling techniques may face
the same challenges

Good documentation needed to complement the model. As always.

36

36

Anchor Modeling Benefits

• Historization by design

–slowly changing dimensions

• Eliminates NULL

– referential integrity

• Handles orphans

–early arriving facts

• Supports separation of concerns

We will look closer at each one of these.

37

37

Historization by design

• Relations as well as attributes can be
historized

• All types of historization is handled

–dependent on the querying method

• Non-historized data can easily be
transformed to historized by adding
historization columns

Bring back the cat again and its color. Say we actually do decide to dye it, then

we can simply add a FromDate column to the attribute, and voila the current cat

is violet.

38

38

Eliminates NULL

• Cardinality between attributes and the
attributed anchor can differ (0-1)

• An entity need only have an identity to
be allowed into the data warehouse

• Constraints are not used in the data
warehouse due to performance reasons

• Integrity and business rules must
instead be guaranteed by proper ETL

Integrity example: Attributes may never be dangling, in the sense that they point

to an anchor that does not exist.

Business rule example: All agreements must have an agreement number, i e 1-1

mappings between anchors and attributes.

39

39

Handles orphans

• The EER model must not be
referentially complete

• Either we know enough from a record
to create the referred anchor

• Or if we do not, we can leave out the
connection by not adding any rows in
the relation-table until we have the
information

If the relation is historized, we can further add a relation as we think is likely and

later change it if we made an erronous assumption.

40

40

Separation of concerns

Grow into your enterprise

data warehouse at your

own pace.

• Prototyping

• Project scoping

• Access control

• The federative
data warehouse

Five divisions in a corporation. Every petal + the common information can be

viewed as a data warehouse of its own.

Each petal can even contain its own attributes to common anchors.

In a mixed environment with legacy warehouses one can start with a small

common base and then grow into an enterprise data warehouse.

41

41

Quotes from users

”New attributes can be

added without affecting

the applications already

using the warehouse

whatsoever.”

DW expert,

Intellibis

”The transition was painful,

but once the first central

anchor had been modeled

the rest was easy.”

DW modeler,

Länsförsäkringar

”Reuseability is high, the

speedup when implementing

new or changed data into the

model is magnitues faster

than with others we’ve used.”

DW maintenance manager,

Länsförsäkringar

”I am relieved to have found

a model where nulls won’t

have to be interpreted.”

DW Performance Manager,

Itello

The final NULL in the coffin. (quote from: Darwen, later used by Fabian Pascal)

42

42

Intellibis Stockholm

Tel +46 8 545 100 90

Kungsgatan 56

111 22 Stockholm

info@intellibis.se

Intellibis Malmö

Tel +46 40 611 78 70

Gustav Adolfs Torg 41

211 39 Malmö

infosyd@intellibis.se

Intellibis Göteborg

Tel +46 31 335 82 20

Fabriksgatan 7

412 50 Göteborg

infovast@intellibis.se

Intellibis Karlstad

Tel +46 8 545 100 90

Expositionshuset

652 26 Karlstad

infokarlstad@intellibis.se

Lars Rönnbäck
lars.ronnback@intellibis.se

