
Anchor Modeling
Where did it all come from?
Background
Anchor Modeling is built upon two
techniques both discovered in the 1970’s;
the sixth normal form and entity rela-
tionships. In more recent years the sixth
normal form has been discussed with
respect to storing temporal data. Also,
entity relationships has evolved into en-
hanced entity relationships, which adds
semantic modeling concepts such as
typing.

What building blocks are used?
Constituents
There are only four different types of
tables used in anchor modeling. The
three types: anchors, attributes, and ties
are sufficient for all modeling needs, but
for practical reasons a fourth type: knots,
is added. It will allow for a simple physi-
cal implementation of the semantic con-
cepts found in enhanced entity relation-
ship modeling. We have introduced our
own symbol for knots, but the others are
commonly used and taken from entity
relationship modeling.

Who holds the identities of entities?
Anchors
An anchor holds the identity of an entity
in the data warehouse. This identity is
always technical by nature and repre-
sented by a surrogate key, rather than the
natural key.

An anchor must contain a surro-
gate key and should contain meta

information, such as information relating
an identity to the batch and source that
generated it.

Where is actual data stored?
Attributes
Attributes always belong to an anchor.
They hold actual attribute values that
can be used to describe the entity whose
identity is stored in the anchor. The
value stored in an attribute can be of
any data type. Note that the cardinality
of an attribute may be less than that of
the anchor.

An attribute must contain a foreign
key referencing the corresponding

surrogate key found in the anchor and
exactly one attribute value. It should
contain meta information similar to that
found in the anchor. If, for a given iden-
tity, the attribute may change over time,
it should also contain historization in-
formation. In the case of the attribute
having a state or a type, it can also hold
foreign keys of knots.

How do you relate entities?
Ties
Relationships between entities are mod-
eled as ties between anchors. A tie will
thereby relate identities to each other.
The most common form is to relate two
anchors, but there is no theoretical limit
to how many anchors can be connected
with a single tie.

A tie must contain the foreign
keys of the adjoining anchors. If,

for the given entities, the relationship
may change over time, it should also
contain historization information. Fur-
ther, it should also contain meta infor-
mation and may have foreign keys to
knots if the relationship has a type or
state.

What simplifications can be made?
Knots
In order to simplify the modeling, a
combination of an anchor and an at-
tribute may be assembled into a knot.
Knots are used for typing or represent-
ing states in the data warehouse. Note
that since it contains both its identity and
its value it may never change over time.

A knot contains a surrogate key
representing its identity as well as

an attribute value. It should also contain
meta information in the case that it is
built from source data, but it may be left
out if it is built by hand.

How do you name the tables?
Naming Conventions
A naming scheme based on prefixes can
be used to give a good overview when
looking at a database or model. It also
avoids bad models since you will have
trouble naming your tables if you are not
designing them correctly.

BUILDING A FUTURE PROOF DATA WAREHOUSE 	 TDWI 2007 AMSTERDAM

ANCHOR MODELING — REGARDT AND RÖNNBÄCK
 WWW.INTELLIBIS.SE

FLEXIBILITY
The environment surrounding a
data warehouse is in constant
change. Anchor modeling is built
on this premise, such that a large
change on the outside will result
in a small change within.

INDEPENDENCE
The model itself is independent
of business logic. Rules are de-
scriptive rather than physical to
increase the longevity of the
data warehouse. You have the
power to decide how the data
should be interpreted.

SCOPING
This modular data warehouse
modeling technique supports
separation of concerns and sim-
plifies project scoping. You can
start small with prototyping and
later grow into your enterprise
data warehouse.

MODULARITY
Data from different functional
units within a business are
stored in the data warehouse as
self-contained areas. They can be
implemented at different times.

EXTENSION
Every change is implemented as
an independent extension in the
existing data warehouse model.
This means that current applica-
tions will not be affected.

MAINTAINABILITY
Consistent use of a simple mod-
eling technique like anchor
modeling will yield conformity
and increase maintainability
across your data warehouses.

http://www.intellibis.se
http://www.intellibis.se

CA_Cat
Anchors have a two letter prefix followed
by an underscore and a descriptive
camel cased name.

CACOL_CatColor
Attributes have a five letter prefix, where
the first two letters indicate to which
anchor it belongs.

CADO_Cat_Dog
Ties have a four, or 2n, letter prefix built
up from the prefixes of the adjoining
anchors. Note the extra underscore in
the descriptive part to stress the fact that
it is a tie.

FRI_Friendliness
Knots have a three letter prefix to sepa-
rate them from the other kinds. Note
that attributes or ties relating to knots do
so without any change to their prefixes.

What does a model look like?
Example
In this simple example we will model a
cat and a dog as separate anchors with a
typed tie between them. Note that we
can leave out the descriptive part in the
logical model if we make sure that the
prefixes are unique (recommended).

The above model contains information
about cats and dogs in a many-to-many
tie, their colors and weights as attributes
as well as how friendly different indi-
viduals are with each other as a knot on
the relation. Weight most likely needs to
be historized, whereas color does not. If
the friendliness may change over time,
the relation itself must also be historized.

Could it have been different?
Generalization
We could also have made a generalized
model based on an animal anchor, AN,
with an animal type attribute, ANTYP.
Then the tie for friendliness would refer
the anchor to itself, ANAN. We would
also have to describe the fact that there
are colors only valid for cats, like tabby,
in addition to the model. Business rules
must in general be documented sepa-
rately from the model and implementa-
tion.

How do you implement the model?
Implementation
Every object from the logical anchor
model is implemented as its own table in
the database. To ensure that duplicates
never can enter the data warehouse each
table must have a primary key (p below)
which guarantees uniqueness. Historiza-
tion information must therefore always
be a part of it. Foreign keys can be de-
clared to ensure integrity.

How do you load data?
Zero Update Strategy
We recommend using only selects and
inserts when loading the warehouse and
never update any rows. This will allow
you to write a simple script using deletes
to revert faulty data, since there will
always be a one-to-one mapping be-
tween the data loaded in a batch and
actual rows in the database. Streaming
ETL tools can be used to fill many tables
with just one scan of the source table.

Are there ways to speed queries up?
Indexing
The best query performance is achieved
by creating clustered indexes over the
primary keys. Since they are clustered
they won’t induce extra storage space,
but work on the actual table data itself.
The index should be arranged with the

surrogate keys in ascending order and
historization columns in descending
order. That way, if you look at how data
is physically structured on your storage
media the latest version for any given key
is always found first.

When do you create surrogate keys?
Identity Management
Proper identity management is key to
success in a data warehouse. For anchor
models there are two ways to achieve it.
To connect the source with the surrogate
you can either persistently store the
natural key in the warehouse and gener-
ate new ones from there (late) or you can
build the connection in your ETL proc-
ess without the need for storing extra
information (early).

How can I write simpler queries?
Collapsing Views
It is possible to create views that collapse
anchors, attributes and ties into their
corresponding third normal form, which
you can query instead of directly access-
ing the anchor model. Most query opti-
mizers will figure out which columns you
are using and discard all other attribute
tables, even though they are joined in the
view. The commonly used ones are:

Historically correct view
This view will keep the historization
information so that you can analyze
changes over time.

Latest view
This view will find and show only the
latest version of the attribute for any
given anchor identity.

Point in time view
This view, or usually a table valued func-
tion, will take a point in time as an ar-
gument and return the latest view with
respect to it.

Historization information is not propa-
gated into the last two views. A left join
from the anchor to the attribute with a
subselect to find the latest (max) version
normally gives the best performance.

What were the benefits again?
✦ Historization by design

– slowly changing dimensions to rapidly changing relations
✦ Elimination of NULL

– one way referential integrity for missing attributes
✦ Orphan handling

– early arriving facts can be added without existing parents
✦ Separation of concerns

– access control, project scoping, and gradual extension
✦ High performance querying

– narrow tables physically arranged for speed during scans
✦ Simplicity in design and use

– naming conventions and collapsing views

BUILDING A FUTURE PROOF DATA WAREHOUSE 	 TDWI 2007 AMSTERDAM

ANCHOR MODELING — REGARDT AND RÖNNBÄCK
 WWW.INTELLIBIS.SE

DO

FRICADO

CACOLCA

DOCOL

CAWGT

DOWGT

CACOL_CatColor

p CA_ID

CACOL_Color

_metadata

CADO_Cat_Dog

p CA_ID

p DO_ID

p CADO_From

FRI_ID

_metadata

CAWGT_CatWeight

p CA_ID

p CAWGT_From

CAWGT_Weight

_metadata

FRI_Friendliness

p FRI_ID

FRI_Degree

CA_Cat

p CA_ID

_metadata

http://www.intellibis.se
http://www.intellibis.se

