Anchor Modeling
(with bitemporal data)

Lars Rönnbäck
May 2012
The only constant is change.

Heraclitus
~ 500 B.C.
Change is Accelerating

- Big Data
- Moore’s Law
- Ephemeralization
- New emerging markets
- Customer “re-preferencing”
- Volatile economic environment
- Fast changing and far reaching regulations

- 5,000,000,000 The earth forms
- 500,000,000 Vertebrates
- 50,000,000 Mammals
- 5,000,000 Primates
- 500,000 Humans
- 50,000 Great migrations
- 5,000 Civilizations
- 500 Printing press
- 50 Television
- 5 Mobile Internet
Traditional Setup

“future proof” information model

resulting static data model

opaque transformation logic

genius
With Quicker-and-Dirtier solutions...

redoing from scratch becomes unavoidable!
Anchor Modeling is an agile technique for modeling information under evolution, and the automatic generation of corresponding database implementations, based on:

- Entity Relationship Modeling (1976 – Chen)
- Bitemporal Databases (1992 – Snodgrass)
- The Sixth Normal Form (2002 – Date, Darwen, Lorentzos)
Anchor Modeling is developed since 2003 in a collaboration between the Swedish industry and academia, the Department of Computer Science at Stockholm University (DSV).

Research Group
Professor Paul Johannesson, DSV
M.Sc. Lars Rönnbäck, Resight
M.Sc. Olle Regardt, Teracom
Ph.D. Maria Bergholtz, DSV
Ph.D. Petia Wohed, DSV
Anchor Modeling is particularly suited for modeling information that evolve over time, both in content and structure.

Almost all information evolve in this way, with new versions and corrections of the content and new entities, properties and relationships emerging within the structure.
The purpose of a **database** is to store a body of information and allow searches over it.

The purpose of a **temporal database** is to store a body of information *under evolution* and allow *historical* searches over it.
Information is not bitemporal in itself. However, most information can be bitemporally modeled:

- Mona Lisa was painted in 1503 and has been hanging in the Louvre since 1797.
- Research done in 2012 has shown that Mona Lisa was in fact painted somewhat later, in 1506.
- During the Second World War, 1939–1945, the painting was moved to safety in the Ingres Museum.
Temporal Terminology

Mona Lisa

1503 painted

1506 corrected in 2012

painting #4711

1797 hanging since

1939 hanging since

1945 hanging since

(changing time)

Ingres

(happening time)

Louvre

museum #42

museum #43

(happening time)

(has the name)

(corrected in 2012)

(recording time)
Mona Lisa
#4711
1503
1506
has the name
painting

Louvre
#42
#43
Ingres

has the name
museum

 siden 1797
 siden 1939
 siden 1945

(value)
(value)
(value)

1506 corrected
in 2012

(value)
Mona Lisa

1503

1506

corrected in 2012

has the name

Ingres

has the name

Louvre

painted

painting

#4711

(hanging since 1797)

(hanging since 1939)

(hanging since 1945)

1506

corrected in 2012

museum

#42

museum

#43

(name)

(attribute)

(anchor)

(tie)

(attribute)

(attribute)
Graphical Notation

- **Anchors**
 store identities of entities

- **Knots**
 store value domains

- **Attributes**
 store values of properties
 (with optional history over changing time)

- **Ties**
 store relationships between entities
 (with optional history over changing time)
Anchor Modeling also provides a naming convention with semantic encoding.
There is a one-to-one correspondence between graphical symbols and tables in the database.

The tables in the database will be in sixth normal form.
All changes are implemented as extensions to the existing model.
Extensions to the model result only in *new* tables in the database.
Non-destructive Evolution

- Structural changes do not affect the existing model in *any* way.
- Upgrading a database to implement such changes only result in new tables being created, therefore it can be done online and almost instantaneously.
- As a result, version n of an application is guaranteed to continue to run on any later version $(n+1)$ of the database.
Identities are **immutable**.
Thanks to the structural separation of mutable and immutable content (a mutable always references an immutable) changes in any one table become temporally independent of those in all others.

- Anchors and knots have immutable content in Anchor Modeling. Ties and attributes are mutable both over changing and recording time.
For every fixed point in bitemporal time: (point-in-changing-time, point-in-recording-time) the model behaves as if it was wholly immutable and with complete “normal” referential integrity.

Given two points, past and present, past identities will still exist in the present due to immutability. Therefore any RI in the past will also satisfy RI in the present, yielding complete temporal RI.
Temporal Entity Integrity

- TEI ensures temporal consistency for attribute and tie values, such that values undergoing evolution cannot overlap if plotted on a timeline (uniqueness over time).

- In 6NF attributes and ties reside in their own tables and TEI can be ensured for changed, recorded, and erased values using simple table constraints.
A restatement is a temporal no-op, desirable when information can arrive out-of-changing-time order and its source can be trusted. Restatements can be allowed or prevented individually on historized attributes and ties.
Types of Timelines

- **Happening times** are instantaneous and do not necessarily form a timeline. When something happens in the modeled domain (PaintDate is 1503).

- **Changing time** consists of periods forming a gapless timeline with a start, but no end. When a property changes its value or a relationship changes its members (hanging at Louvre changes to Ingres Museum in 1939).

- **Recording time** consists of periods forming a timeline that may contain gaps. The time during which values were stored in some kind of memory (in 2012 delete PaintDate 1503 and insert PaintDate 1506).
Unknown Values

Unknown values either:

- *have business value* and should therefore be modeled explicitly, for example using the string ‘Unknown’ and making them visible to the end user.

- *have no business value* and should therefore be represented by gaps in the recording timeline and become invisible to the end user during the gap.

Changing time cannot be “end-dated”.
Perspectives (temporality)

- Parametrized views select temporality:
 - Latest perspective
 Shows the latest available information.
 - Point-in-time perspective
 Shows information as it was on the given timepoint.
 - Interval perspective
 Shows information changes that happened within the given interval.
Most end users are familiar with 3NF and need not see the underlying 6NF model.

Users only need to pick the temporal perspectives suitable for their task.
-- happening time
insert into llPA_Painting (
 PA_NAM_Painting_Name,
 PA_PDA_Painting_PaintDate
) values ('Mona Lisa', 1503);

-- changing time
update llPA_hanging_MU_at (
 set
 MU_ID = 43,
 PA_hanging_MU_at_ChangedAt = 1939
) where
 PA_ID = 4711;

-- recording time
delete from llPA_Painting
where
 PA_NAM_Painting_Name = 'Mona Lisa';

insert into llPA_Painting (
 PA_NAM_Painting_Name,
 PA_PDA_Painting_PaintDate
) values ('Mona Lisa', 1506);

-- latest changing latest recording
select ... from llPA_Painting;

-- point-in-changing latest recording
select ... from plPA_Painting(1942);

-- point-in-changing point-in-recording
select ... from ppPA_Painting(1942, 1942);

The insert, update, and delete triggers make it possible to use only the views for all data modification and querying.
The Open Source Tool

DEMO
Anchor Modeling (but not yet the tool) supports “multi-bitemporal” modeling through the use of timeline annexing. This is useful for modeling concurrency and in data warehousing of multiple bitemporal information sources.

A timeline annex is an extension of the primary key* to include the annex (timeline owner):

- ID*, Value,
- ChangedAt*, ChangingAnnex*,
- RecordedAt*, ErasedAt*, RecordingAnnex*
Anchor Modeling…

- has a solid scientific formalization.
- is built on well known principles.
- is easy to learn.
- is hard to make mistakes with.
- fully supports agile development.
- shortens implementation time.
- lowers maintenance costs.
- preserves all previous versions of the database.
- increases the lifetime of the database.
- has Open Source tools.
- is free to use.
More?

- Homepage: www.anchormodeling.com
- E-mail: lars.ronnback@anchormodeling.com
- Twitter: anchormodeling
- LinkedIn: Anchor_Modeling_Group
- Facebook: Anchor_Modeling
- Wikipedia: Anchor_Modeling
- MSDN: Anchor_Modeling

Do not miss our 5 minute video tutorials (total 2 hours) available on the homepage.