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Abstract. High performance querying and ad-hoc querying are com-
monly viewed as mutually exclusive goals in massively parallel process-
ing databases. In the one extreme, a database can be set up to provide
the results of a single known query so that the use of available of re-
sources are maximized and response time minimized, but at the cost
of all other queries being suboptimally executed. In the other extreme,
when no query is known in advance, the database must provide the in-
formation without such optimization, normally resulting in inefficient
execution of all queries. This paper introduces a novel technique, highly
normalized Big Data using Anchor modeling, that provides a very effi-
cient way to store information and utilize resources, thereby providing
ad-hoc querying with high performance for the first time in massively
parallel processing databases. A case study of how this approach is used
for a Data Warehouse at Avito over two years time, with estimates for
and results of real data experiments carried out in HP Vertica, an MPP
RDBMS, are also presented.
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1 Background

Big Data analytics is rapidly becoming a commonplace task for many compa-
nies. For example, banks, telecommunication companies, and big web companies,
such as Google, Facebook, and Twitter produce large amounts of data. Nowadays
business users also know how to monetize such data. For example, various pre-
dictive marketing techniques can transform data about customer behavior into
great monetary worth. The main issue, however, remains to be implementations
and platforms fast enough to execute ad-hoc analytical queries over Big Data [2].
Until now, Hadoop has been considered a universal solution, but it has its own
drawbacks, especially in its ability to process difficult queries, such as analyzing
and combining heterogeneous data, and performing fast ad-hoc analysis [5].

This paper introduces a new processing approach, using Anchor modeling
in massively parallel processing (MPP) databases. The approach significantly



increases the volume of data that can be analyzed within a given time frame.
It has been implemented in HP Vertica [6], a column-oriented MPP RDBMS,
and is used on a daily basis for fast ad-hoc query processing at Avito, a popular
Russian web site for classified ads [10]. The approach gives their data scientists
an ability to execute complex queries that process terabytes of data in minutes.
The approach is generic and should apply equally well to other MPP databases,
such as Pivotal Greenplum, Actian Matrix, and Amazon Redshift. The paper
starts by describing the case for normalized Big Data at Avito, with subsections
on Anchor modeling, benefits, theoretical estimates, and practical verification of
the approach. The paper ends with the drawn conclusions.

2 The Avito Case for Normalized Big Data

Big Data is commonly defined using the “3Vs”: Volume (large amounts of data),
Variety (various forms and evolving structure), and Velocity (rapid generation,
capturing, and consumption) [2]. Log files are common sources of structured Big
Data. Web servers record logs of detailed user actions, click rates, visits, and
other property records of web users. The sequence of pages visited by within
a particular website is known as the clickstream of the user. Clickstreams are
analyzed to understand traffic, the number of unique visitors, sessions, and page
views. Clickstreams of groups of users often follow distinct patterns, the knowl-
edge of which may help in providing customized content [1]. They may, however,
also be generated by a non-human activity. Fake identities and Sybil accounts
are responsible for a growing number of threats, including fake product reviews,
malware, and spam on social networks. Similar clickstreams can be grouped
into behavioral clusters to detect and eliminate non-human accounts [9]. Iden-
tification and elimination of a non-human activity is important in all analytical
tasks, such as proper traffic estimation and pattern detection. It may also have
significant reputational, ethical, and even legal effects if left unattended.

Clickstream analysis was one of the main defined objectives for the Data
Warehouse at Avito. Based in Moscow, Avito is Russia’s fastest growing e-
commerce site and portal, “Russia’s Craiglist”. It grows ≈ 50% a year and now
second only to Craiglist and Chinese site 58 in the rating of classified sites [10].
In terms of 3Vs, Avito clickstream data have over 600 million user actions a
day (Volume), a business model that is constantly evolving, where new features
are constantly added (Variety), and users perform up to 1 million actions per
minute. User profiles, which help to reject non-humans and generate personalized
content, have to be recalculated in near real-time (Velocity).

The BI team at Avito was challenged to develop a scalable Data Warehouse,
that could grow in volume and complexity together with their business model,
while being able to support analytical workloads, such as clustering analysis, cor-
relation analysis, A/B testing (two-sample hypothesis testing), and Data Mining
Algorithms. Hadoop and other NoSQL approaches were rejected in the process,
and instead an MPP relational database, HP Vertica [6], and highly normalized
data model, Anchor Modeling [7], were selected.



2.1 Anchor Modeling

Anchor modeling [7] is a database modeling technique resulting in implementa-
tions where tables are in 6NF, the sixth normal form. Entities and relationships
in Anchor modeling are highly decomposed. In 6NF tables have no non-trivial
join dependencies [3], making tables narrow with few columns in comparison
to, for example, the wide tables of 3NF. The traditional concept of an entity is
thereby spread out over many tables, referred to as an ensemble [4]. Massively
parallel processing databases generally have shared-nothing scale-out architec-
tures, such that each node holds some subset of the database and enjoy a high
degree of autonomy with respect to executing parallelized parts of queries. In
order to maximize utilization, each node should perform as much of its assigned
work as possible without the involvement of other nodes. The following four
constructs are used in Anchor modeling, all having a predefined distribution.

Anchor, table holding surrogate identifiers for instances of an ensemble. Each
instance in the modeled domain has its own unique surrogate identifier and they
are stored in anchors. Surrogate identifiers are immutable and assumed as the
only part of an instance that cannot change over time. Anchors are distributed
across the nodes by a modulo operation on a hash of the surrogate identifier,
such that no duplication exists.

Attribute, table holding named property values for an ensemble, that cannot
be described as ensembles in their own right. An attribute table holds the sur-
rogate identifier of the instance and the property value, with an optional history
of changes to those values. Attributes share the same distribution scheme as
anchors, which keeps an instance of an ensemble with its history together on the
same node.

Tie, table holding a relationship between ensembles, distinguished by the
roles those ensembles play. Tie tables have one column for each involved role,
holding a reference to a surrogate identifier. Ties are distributed across the nodes
for each role, duplicating subsets of the tie such that all relationships that an
instance takes part in can be resolved without the involvement of other nodes.

Knot, table holding a set of enumerated values. If the possible values of an
attribute fall within a, usually small, finite set of values, or a tie represents a
relationship which has or may change categories, such values are best represented
through knots. Knots hold surrogate identifiers for every value and the value
itself, where values should be unique, mutually exclusive and exhaustive. Knots
are fully duplicated on every node.

Attributes and ties may be static or historized depending on if they keep
a record of changes over time. Historized tables contain an additional column
indicating since when a value or relationship is in effect. Attributes and ties may
also be knotted in which case they contain a reference to a value in a knot table,
rather than an actual value. All tables may also contain technical columns, such
as a reference to custom metadata.



2.2 The Evolution of the Avito Data Warehouse

The first version of the Data Warehouse (DW) at Avito was built in 2013 using
Anchor modeling, contained 10TB of data, and ran on an HP Vertica cluster of
3 nodes. It loaded data from two data sources; the back office system at Avito
and clickstream web logs. Since then, the DW has grown, and the current size
of the Avito data warehouse has been limited to 51Tb for licensing reasons.
It now contains years of consistent historical data from 14 data sources (back
office, Google DFP/AdSense, MDM system, CRM system, RTB systems, among
others), and a rolling half year of detailed clickstream data. The cluster has been
increased from 3 to 12 nodes in order to scale up performance.

Clickstream data are loaded every 15 minutes. At the beginning of 2014
each such batch contained 5 million rows (≈1.5GB) and 15 million (≈5Gb) one
year later. Avito has evolved their data model over the years. The clickstream
records originally had less than 30 attributes, while now containing more than
70. Clickstream data has grown many times, both in terms of velocity (number of
rows per minute), volume (size), and variety (number of attributes). The growth
was successfully handled through scaling up the cluster by the addition of nodes.

ETL processes are implemented using Python. Data sources are loaded using
different approaches: clickstream is loaded using FluentD with MongoDB as
intermediate cash, back office data are loaded using intermediate CSV files, and
data from Google DFP and CRM system are loaded through web services. The
current version of the Avito DW contains ≈ 200 anchors, ≈ 600 attributes, and
≈ 300 ties, loaded from the data sources. Some ties and attributes are historized,
some are not. There are two distinctive modes of ETL processes:

– Increment from operational database. Characterized by a small number of
rows from a large number of source tables and source columns, with most ties
and attributes historized. Data is loaded every 4 hours, taking 30 minutes,
from 79 source tables to 45 anchors, 83 ties, and 238 attributes. The largest
source delta contains ≈1 million rows.

– Increment from clickstream. Characterized by a large number of rows from
a small number of source tables and source columns, with most ties and
attributes static. Data is loaded every 15 minutes, taking 15 minutes, from
16 source tables to 16 anchors, 39 ties, and 43 attributes. The largest source
delta contains ≈10-15 million rows.

2.3 Beneficial Effects of Normalization

An important effect of Anchor modeling is the ease of which new attributes, ties,
and anchors can be added to the model, only resulting in new tables. The creation
of such are close to instantaneous and populating them with data causes no locks
for existing operations and ETL processes. Applications remain unaffected, since
the existing schema is non-destructively extended [7], and can be dealt with to
incorporate new features when time permits.

When data is sparse, arising though the addition of new attributes or when
an attribute does not apply to all instances, normalization provides another
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Fig. 1. Extending a less normalized model (left side) and a corresponding Anchor
model (right side).

benefit. Only actual values are stored and “nulls” are represented by the absence
of rows. For example, when less than half of the cookies have a known user, as
in Fig.1, the attribute contains fewer rows. Furthermore, when the number of
distinct values is relatively low compared to the total number of values, knotted
attributes can be used. Rather than repeating the relatively few long strings
representing referers (URLs), these are stored as unique values of a knot. The
knotted attribute instead contains identifier references, much smaller than the
strings they represent. A query with a condition on the referer, such as containing
a particular substring (UTM mark detection), can then be computed much more
efficiently. The licensing cost of Vertica depends on “raw data size”, the size of
comma-separated lists of values in tables. In the less normalized model, referer
strings are repeated 80 billion times, but only 1 million times in the Anchor
model. By using Anchor modeling, Avito were able to store substantially more
data without affecting its licensing cost.

2.4 Reporting and Ad-hoc Analysis

Using Anchor modeling with a Vertica cluster has proven beneficial at Avito
for data modeling, data loading, and data maintenance. Though, from their
experience, it has required some additional efforts to implement reporting and
ad-hoc analysis. Reporting is considered as frequently spreading information,
based on the same queries, to many recipients. Execution time of those queries
cannot be longer than a few seconds. Ad-hoc querying is to test hypotheses,
train models, or explore data to find suitable reports, using new queries. While
shorter execution times are preferable, it is acceptable that these queries run for
minutes or even hours in some cases.

Reporting can be implemented by creating dedicated denormalized data
marts and using specialized BI software. Such data marts are implemented as
regular views or materialized views. For reporting, the experience of Avito is that
it is impossible to avoid data marts. The Anchor model stores fully historized
versions of instances, which business users are not used to. There may also be the
need to impose business logic or aggregate data in the marts. The development
of efficient such views, as well as ad-hoc analysis, is based on the creation of
high performance queries. While the optimizer in Vertica generally does a good
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Fig. 2. An example 3NF model (left tables) and corresponding Anchor model (right
diagram) of click stream data.

job, when data is big, starting from ≈100 million rows, it may produce poor
execution plans.

The BI team at Avito performs ad-hoc queries accessing hundreds of billions
of rows in a Anchor model on a daily basis. Because of this, a query modification
approach was designed. The approach aims to optimize the query execution
plan according to the highly normalized data model. The following sections will
describe a sample task illustrating the approach. Its benefits in comparison to
the execution plan in a denormalized data model are presented.

2.5 Theoretical Estimates and Practical Verification

The largest data set available at Avito for testing purposes is the clickstream
data set. It will be compared using an Anchor model and a 3NF model, seen
in Fig.2, having exactly the same information content. In the models WebEventID
is the surrogate identifier of a clickstream record, EventDate is the date and
time of an event, EventType is its type, such as ‘search’, ‘message’, or ‘purchase’,
CookieID is a surrogate identifier of a cookie, User is the user bound to the cookie,
CreationDate is when it was created, and ExpirationDate is when it expires. These
models are simple, and only represent a small subset of the actual model used
at Avito, but sufficient in order to verify the expected benefits.

Experiments were made in the column-oriented massively parallel processing
relational database HP Vertica v.7.1.0.3, with cluster sizes of 5, 10, and 12 nodes,
where each node is an HP ProLiant DL380p Gen8 server with double Intel Xeon
E5-2680 v2 CPUs, 256GB RAM, 25 * 300GB SAS 15k SFF 2.5” HDDs connected
through a RAID card with 2GB cache, and an HP 530SFP+ Ethernet 10Gbit
2-port LAN-adapter for communication. Since the experiments were carried out
in a production environment, daily operations, such as ETL and reporting, may
have affected the results. In order to minimize such effects, experiments were
repeated several times and averages calculated. The two models in Fig.2 were
populated with data, consisting of approximately 50 billion actual web events
accessing 3.4 billion cookies.

2.6 Scenario, Query Optimization, and Results

The chosen ad-hoc query is to calculate the number of unique users who triggered
page view events (condition on EventType) during February 2014 (condition on



select count(distinct c.User)
from Cookie c
join WebEvent we
on we.CookieId = c.CookieId
where date trunc(’month’,

c.CreationDate) = ’2014−02−01’
and c.CreationDate = we.EventDate
and we.EventType in (42, 43)

select count(distinct u.User)
from Cookie WebEvent tie join User u
on u.CookieID = tie.CookieID
join CreationDate cd on cd.CookieID = tie.CookieID
join EventDate ed on ed.WebEventID = tie.WebEventID
join EventType et on et.WebEventID = tie.WebEventID
where date trunc(’month’, cd.CreationDate) = ’2014−02−01’
and cd.CreationDate = ed.EventDate
and et.EventType in (42, 43)

Fig. 3. Corresponding queries in the 3NF model (left) and the Anchor model (right).

EventDate), and have new cookies (CreationDate of the cookie is the same date as
the EventDate). The query was selected for estimation, because it is typical, it is
simple for reading, and it requires great amount of system resources to operate.
The SQL code for the queries, as they would look in the 3NF model and the
Anchor model, can be seen in Fig.3.

The execution plan in the 3NF model is the one selected by the Vertica query
optimizer. Many modern query optimizers can make use of column statistics,
holding information about the distribution of values, to determine the optimal
join order. The most selective conditions in a query are applied first, yielding
successive intermediate result sets between joins that have as few rows as pos-
sible. Since a non-optimal plan was chosen by the optimizer, the execution plan
in the Anchor model was forced by producing intermediate steps by hand. The
hand made plan demonstrates that efficient query execution plans for complex
analytic queries in an Anchor model exists. Based on such, the BI team at Avito
implemented a framework for semi-automatic generation of efficient plans for
Big Data. Future generations of Vertica optimizers can be complemented with
similar logic. The statistics of the sample set is as follows.

– R, row count of Cookie anchor table ≈ 3.4 billion.
– S, attribute value selectivity expressed as selection of “one out of S”.

Condition on CreationDate reduces data to 1/S1 ≈ 1/3.01.
Condition on EventType reduces data to 1/S2 ≈ 1/3.20.
Condition on EventDate = CreationDate reduces data to 1/S3 ≈ 1/3.17.

– M , average number of events per cookie. M ≈ 50/3.4 ≈ 15.
– A, average size of each column = 8 bytes.
– P , size of disk page = 4000 bytes.

For 3NF, according to [8], the optimizer will choose an early materialization
strategy for the smaller, inner side, of the join. The experiments confirmed this,
with the following execution plan.

1. Read CookieId, User, CreationDate columns from disk to RAM, according to
EM-pipeline strategy [8]. Data is filtered by the condition on CreationDate.

2. Read disk pages to match remaining CookieId keys in the WebEvent table.
A hash join is used, as well as a resegmentation of the key between nodes.

3. Load EventDate and EventType for the matched WebEvent rows. Data is
filtered by the condtition on EventType.



Fig. 4. When a part of a join is reduced, from the two disk pages (left) to one page
(center, right), the number of pages needed to be read in order to produce the join
depend on whether the joined keys are concentrated (center) or spread out (right). For
an arbitrary join, the number of pages to read is normally significantly reduced.

4. Filter loaded data by the condition on EventDate and CreationDate, calcu-
lating the number of unique User values.

RAM usage can be estimated as 3∗R∗A
S1

+ M∗R∗A
S1

+ R∗A∗M
S1∗S2

≈ 190Gb. While
servers may have more than 190GB of RAM, this is but one of many possible
ad-hoc queries. A Big Data installation is likely to support multiple concur-
rent processes (ETL, maintenance, reporting), all competing for resources. It
is therefore impossible to guarantee that each type of ad-hoc query will obtain
enough RAM at the moment of execution. The plan described above is then no
longer possible, forcing the query optimizer to spill the join operation onto disk.
A join spill (the term may differ between vendors) means that some part of
an execution plan requires too much RAM, and data have to be separated into
N chunks3, small enough to fit into available RAM, and that can be processed
sequentially with their results assembled afterwards.

Join spill reduces maximum RAM utilization, but increases disk I/O, a slower
resource. Fig.4 illustrates, why a condition reducing a table on one side of the
join may not reduce the number of disk operations for the table on the other
side of the join. Therefore, disk I/O operations can be estimated according to
optimistic (concentrated keys) or pessimistic (spread out keys) scenarios. In the
optimistic one, the number of operations is the same as in a RAM join, whereas
in the pessimistic one the whole table may need to be scanned for each chunk.

– Disk page ops, optimistic: R∗A∗(4∗M+3)
S1∗P

– Disk page ops, pessimistic, RAM join: R∗A∗(4∗M∗S1+3)
S1∗P

– Disk page ops, pessimistic, join spill: R∗A∗(4∗N∗M∗S1+3)
S1∗P

– Logical ops: R∗M
S1

+ R∗M
S1∗S2

+ R∗M
S1∗S2∗S3

(log( R∗M
N∗S1∗S2∗S3

) + 1)

For an Anchor model the hand-made execution plan aims to maximize
merge join utilization. Hash join can be almost as fast as merge, but it requires
a lot of RAM. If limited, the join must again be spilled during execution. The
following execution plan can either be implemented by hints or by a set of
subsequent temporary tables.

3 N = 〈pessimistic RAM estimation〉/〈available RAM〉, rounded up.



1. Read CookieId, CreationDate columns from disk to RAM, according to EM-
pipeline strategy [8]. Data is filtered by the condition on CreationDate.

2. Load WebEventID from WebEvent–Cookie tie table via merge join.
3. Streaming sort, resegmentation and storing of WebEventId into temp table.
4. Filtered loading of EventType attribute table, joined with the temp table

from step 3, reducing the count of WebEventID keys.
5. Load EventDate and CookieId from EventDate attribute table and triple

merge join the WebEvent–Cookie tie and temp table from step 4 inside RAM.
6. Merge join of temp tables from step 1 and step 5, streaming filtering accord-

ing to the condition CreationDate = EventDate.
7. Loading of User values from User attribute table inside RAM via merge join

with temp table from step 6, calculating the number of unique User values.

The CPU in each server is expected to perform 109 FLOPS and the I/O able
to push 150MB/s, both considered to be conservative estimates. Using these
metrics the estimated execution time was determined together with the presented
formulas for 3NF and Anchor modeling, with the results seen in Table 1.

– Disk page read ops, optimistic:R∗A∗(2∗S2∗S3+6∗S2∗S3∗M+6∗S3∗M+2∗S3+2∗M)
S1∗S2∗S3∗P

– Disk page read ops, pessimistic:R∗A∗(4∗S2+2∗M∗S2+8∗S1∗S2∗M+2∗S1∗S2+2∗M)
S1∗S2∗P

– Disk page write ops: 2∗R∗A∗(1+M)
S1∗P , RAM usage (max): R∗A∗M

S1∗S2

– Logical ops:
R
S1

∗ log( R
S1

)+ M∗R
S1

∗ log(M∗R
S1

)+ M∗R
S1∗S2

∗ log( M∗R
S1∗S2

)+ M∗R
S1∗S2∗S3

∗ log( M∗R
S1∗S2∗S3

)

Table 1. Theoretical estimates of execution times and actual results from experiments.

(optimistic–pessimistic), actual execution time
Plan type 5 Nodes 10 Nodes 12 Nodes

3NF RAM Join (671–2075), 3133s4 (335–1038), 662s (280–865), 491s

3NF Spilled Join (687–8399), 3017s (344–4119), 1703s (287–3423), 1172s

Anchor modeling (1185–4515), 2643s (849–2514), 1174s (719–2074), 959s

Anchor modeling is not able to reach the speed of the RAM joined 3NF
query, but it does comparatively well and is faster than the spilled join, which is
the more likely of the two. Considering that no work have to put into creating
dedicated indexes in Anchor modeling, whereas the problem grows exponentially
with the number of columns in a 3NF table, it proves itself very suitable for ad-
hoc querying. It also scales similarly to the others when the number of nodes
is raised. In 3NF, where non-trivial join dependencies exist, data may also need
to be fetched from other nodes. Tables less normalized than 6NF are therefore,
with respect to the autonomy of the nodes, suboptimal for MPP.

4 This join required > 38Gb of RAM on each node and it also spilled to disk.



3 Conclusions

While much have been said about Big Data with respect to information that have
little structure, such as media in different forms, there has been little research
into structured Big Data outside of NoSQL solutions. Systems that produce
logs, sensors that give information, and other high transaction environments,
such as banking, stock trading, and retail to name a few, all yield large volumes
of structured data and should all benefit from the approach described in the
paper. The experiments carried out showed that the approach works well in the
simplified case of two linked entities. Real-world business cases sometimes require
three, four or even a dozen linked entities in a single ad-hoc query. Such cases
multiply the risk of join spill occurring in some step, and amplify its negative
effects. When the number of joins, tables, and filtering conditions increase, the
accuracy of the estimated RAM requirement decreases. The query optimizer
may significantly overestimate RAM requirements and cause unnecessary join
spills. Until rectified, forcing plans is necessary in order to achieve maximum
performance. The given approach has been in use at Avito for over a year, for ad-
hoc and regular reporting, and even for near-real time KPIs. It has demonstrated
stability in terms of execution time and resource consumption, flexibility with
respect to schema evolution, and low maintenance with respect to total cost of
ownership.
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