
1

Anchor Modeling
I N T H E D A T A W A R E H O U S E

Lars Rönnbäck – Olle Regardt

2

You can never step into
the same river twice.

3

Five Essential Criteria

A future-proof data warehouse must at least fulfill:

– Value

– Maintainability

– Usability

– Performance

– Flexibility

Fail in one and there will be consequences

4

The Hybrid Architecture

SOURCES

MARTS

what data we can find and how it is gathered changes over time

what data we can serve and how it is delivered changes over time

PERPETUALLY EVOLVING
ANCHOR MODEL

5

Best practices for Anchor Models

– modeling constructs

– design patterns

– physical implementation

– naming convention

– collapsing views

– table elimination

– loading practice

– identity management

A large change outside the data
warehouse should result in a

small change within.

– flexibility

– historization

– null-handling

– orphaned relations

– project scoping

– storage

– temporal querying

– performance

colour cat weight

A table is in sixth normal form if
and only if it satisfies no non-trivial

join dependencies at all.

cat dogenemy

[arch]

An entity-relationship model
adopts the natural view that

the real world consists of
entities and relationships.

7

Anchor modeling

We use EER to draw our modeling diagrams (logical model)
and we implement it in 6NF.

Modeling constructs

• Three table types (ER) are sufficient

• Anchors

• Attributes

• Ties

• Using a fourth table type (EER) we can simplify models

• Knots

8

Anchors

An anchor holds the identity of an
entity in the data warehouse.

The identity is a technically
generated surrogate key,
rather than the natural key.

AC = <#789>

9

Attributes

Attributes always belong to an
anchor. They hold actual attribute
values that can be used to describe
the entity whose identity is stored in
the anchor.

The value stored in an attribute is
strongly typed and can be of any
data type.

A historized attribute has
a double outline.

AC = <#789>
ACGEN = <#789, Female>
ACNAM = <#789, Marilyn, 19580101>

10

Ties

AC = <#789>
ACGEN = <#789, Female>
ACNAM = <#789, Marilyn, 19580101>
PEAC = <#256, #789>
ACPR = <#789, #345, 19710819>

Relationships between entities are
modeled as ties between anchors.

A tie contains the identites from
the adjoining anchors. Usually
two, but can be an n-tuple.

A historical tie has a double
outline.

11

Knots

A combination of an anchor
and an attribute may be
assembled into a knot.

Knots are used for typing,
representing states or
domain values.

Since it contains both its
identity and its value it
may never change over
time. Knots are non-
historized by design.

RAT = <#2, Excellent>
ACPR = <#789, #345, #2, 19710819>

Anchor Design Patterns

Business entities firmly
anchored in the organization
should become anchors. The
anchors represent that with
which the business works.
We call these anchors
concrete.

There are however other
things that is handled by or

affect your business, like
events or transactions. They

should also be modeled as
anchors. We call these

anchors abstract.

Attribute Design Patterns

A knotted attribute pattern
is used when the count of

the attribute is much higher
than the cardinality.

Tie Design Patterns

The knotted tie pattern is used for relations with a type or
state. It may be used both statically or historically.

15

An
example
model

The scenario here is
based on a business
arranging stage
performances. The
business entities are
the stages on which
performances are
held, programs
defining the actual
performance, and
actors who carry out
the performances.

16

Physical Implementation

Tables in an anchor model are implemented physically in a
manner that in detail reflects the logical model.

There will be one table for each entity in your model.

Every table will further have a relation to a metadata
structure, in which metadata about specific rows are stored.

- When it was created
- Who created it
- How it was created
- From where it came

17

The Physical Anchor

The anchor holding the identities of the different actors will
contain rows with a unique surrogate key for its identity.

The primary key in this table is the identity column, on which
a unique clustered index should be created in ascending
order.

18

The Physical Attribute

Actors have names, so there is an attribute table associated
with the actor which holds the name information.

The primary key in this table is the foreign identity column
together with the historization date. A composite unique
clustered index should be created on the foreign identity
column in ascending order together with the historization
date in descending order.

19

The Physical Tie

The current rating that an actor has got for performing a
certain program is modeled as a tie.

The primary key and unique clustered index should in this
case be the composite of the two foreign keys in ascending
order and the historization date in descending order.

20

The Physical Knot

The actual rating, in cleartext is modeled as a knot.

The primary key and unique clustered index should in this
case be the column containing the identity of the knot.

21

Naming convention for tables

Anchors have a two character mnemonic:
AC_Actor, ST_Stage

Attributes have a five character mnemonic:
ACNAM_ActorName, STLOC_StageLocation

Ties have a four (or 2n) character mnemonic:
PEAC_Performance_Actor, STPR_Stage_Program

Knots have a three character mnemonic:
RAT_Rating, GEN_Gender

22

Naming convention for columns

Anchors have a two character mnemonic:
AC_ID

Attributes have a five character mnemonic:
ACNAM_Name, STLOC_Location

Ties have a four (or 2n) character mnemonic:
STPR_FromDate

Knots have a three character mnemonic:
RAT_Description

23

Collapsing views

Collapses the anchor model to third normal form.

We need to pick a temporal view of the data:

Latest view

Point-in-time view

Difference view

24

Latest view

This view shows the latest version of everything that has
been historized:

25

Point-in-time view

This table valued function shows the latest version of
everything prior to the given date:

26

Difference view

This table valued function shows the all versions of
everything falling in between the two given dates:

27

Table elimination

Even though all the attributes surrounding an anchor is
joined into the view, those tables can many times be
eliminated from the query execution.

Typical data warehouse queries do not retrieve all
attribute values in a single query.

Most of the time few selected attributes are put against
each other in a query.

28

Table elimination

Even though all the attributes surrounding an anchor is
joined into the view, those tables can many times be
eliminated from the query execution.

Typical data warehouse queries do not retrieve all
attribute values in a single query.

Most of the time few selected attributes are put against
each other in a query.

29

Performance comparison

Increasing number of attributes Increasing number of rows

30

Loading without updates

Only insert statements are allowed, which means that
data is always added, never updated. Delete statements
are allowed, but then only when applied to remove
erroneous data.

Will affect your model:

Use state knots to model non-persistancy

31

Loading without updates

Only insert statements are allowed, which means that
data is always added, never updated. Delete statements
are allowed, but then only when applied to remove
erroneous data.

Will affect your model:

Use state knots to model non-persistancy

Benefits:

No need for transactions – backing through scripting

32

Identity Management

To make the management of identities easier we create a
helper view called the natural key view for every anchor.

For example iPE_Performance, in which you can find the

natural key for a performance together with the technical
surrogate key.

Acts as a translation table between natural keys and their
corresponding surrogate identities.

Can be materialized if needed to increase performance.

33

Benefits: Flexibility

Since none of the existing model is affected by changes,
we can guarantee that applications using it will remain
unaffected.

Of course, once you incorporate your changes into the
collapsing views, anything using the views will have to be
looked over.

Rather than trying to encompass the entire business with
all its entities when modeling, we can start with a first
tightly scoped model and grow from there.

An anchor model is an evolving model by design.

34

Benefits: Historization

Anchor models are bi-temporal by design. Only using a
FromDate, never a ToDate.

Every attribute you have in a business can be historized
and different versions can easily be found using the
collapsing views.

We also keep track of when, who, how and from where
data was entered using metadata.

Compared with the third normal form, an anchor model
will not duplicate data when historization is done.

35

Benefits: Performance

The immediate fear of breaking up data into many tables
is that performance will suffer due to the extra joins that
will have to be performed.

All in all, an anchor model is bound to be much less I/O
intense than a corresponding third normal form model.
This makes anchor models even more suitable for data
warehouses, where I/O often is one of the first obstacles
you will hit with respect to performance.

We can also “hot partition” individual columns, or
compress them.

36

Benefits: Storage

Thanks to the high degree of normalization in an anchor
model together with strong typing our data is stored very
efficiently.

We have done comparisons with fourth normal form
models with generalized types (weak typing).

The weakly typed model was twice as large.

The weakly typed model took almost three times longer
to query because of more data to scan + type conversion
being made.

37

Benefits: Null values

There are no null values in an anchor model, but there
may be null values in the collapsing views.

An attribute always belong to an anchor, but the reverse
is not true. An anchor does not have to have all its
attributes present.

Missing values = missing rows in the attribute.

If only 10% of the identities in an anchor have a certain
attribute, then you will find rows only for these in that
table.

38

Benefits: Orphaned relations

Let’s say that it is of the utmost importance for our
business managers to be able to see the revenue from a
performance immediately after it has been held.

Say a performance is uniquely identified by when and
where it was held.

What if this is the only information we get, and that who
took part in the performance and what was played
always arrive a week later?

No problem! We can store what we know now and add
the completing information later.

39

Benefits: Temporal querying

Really complex questions can be formulated as simple
queries using the collapsing views:

select

pAC.ACNAM_ActorName,

max(pACPR.RAT_Rating)

from

pAC_Actor (‘1995-01-01’) pAC

join

pACPR_Actor_Program (‘2005-01-01’) pACPR

group by

pAC.ACNAM_ActorName

What best ratings did our actors from 1995
have in 2005?

We decide how we want to view the history!

40

Benefits: Simplicity

Thanks to its few building blocks and the simple logic
behind the design patterns, anchor modeling is easy to
learn and hard to make modeling errors in.

Because of its structured nature, we can also
automatically generate scripts that create tables and all
the different collapsing views.

A compact XML defining the model is the only input.

41

Further reading

Please visit the site www.anchormodeling.com where we
will be adding new material that we produce.

Anchor Modeling has an Open Source-like license:
Creative Commons Attribution-Share Alike 3.0 Unported

You can also contact us at:
info@anchormodeling.com

http://www.anchormodeling.com/
mailto:info@anchormodeling.com

