
Anchor Modeling:

Naming Convention

L. Rönnbäck
lars.ronnback@resight.se

Resight, Kungsholms Strand 179, 112 48 Stockholm

O. Regardt
olle.regardt@teracom.se

Teracom, Kaknästornet, 102 52 Stockholm

M. Bergholtz, P. Johannesson, P. Wohed
maria@dsv.su.se, pajo@dsv.su.se, petia@dsv.su.se

DSV, Stockholm University, Sweden

September 15, 2010

Entities in an anchor schema can be named in any manner, but having
a naming convention outlining how names should be constructed increases
understandability and simplifies working with a model. If the same convention is
used consistently over many installations the induced familiarity will significantly
speed up recognition. A good naming convention should fulfill a number of
criteria, some of which may conflict with others. Names should be short, but long
enough to be intelligible. They should be unique, but have parts in common for
related entities. They should be unambiguous, without too many rules having to
be introduced. Furthermore, in order to be used in many different representations,
the less “exotic” characters they contain the better. The suggested conventions
use only regular letters, numbers, and the underscore character. This ensures
that the same names can be used in a variety of representations, such as in a
relational database, in XML, or in a programming language.

The conventions suggested in Figure 1 are described using a variant of EBNF
(Extended Backus-Naur Form). This variant allows regular expressions to be
used in the production rules, such as allowed ranges and different specifications
of repetitions, while keeping the comma sign for concatenation. An example
of an allowed range can be seen in the production rule for the primitive ‘lower’
with the regular expression: [a-z], allowing all lower case letters. Examples of
repetitions can be seen in the production rule for the primitive ‘lwords’ with the
regular expression: (lower)+, (uword)?, where the primitive ‘lower’ must occur
one or more times and may be followed by the primitive ‘uword’ once. Another
example of a repetition can be seen in the production rule for the mnemonic

1



Parts

NT(T ) ::= T , delim, historization
NIK(T ) ::= MK, delim, identity, delim, RK

NIA(T ) ::= MA, delim, identity, delim, RA

NT(B) ::= MB, delim, historization
ND(B) ::= B
NIK(B) ::= MK, delim, identity
NIA(B) ::= MA, delim, identity
ND(K) ::= K
NI(K) ::= MK, delim, identity
NI(A) ::= MA, delim, identity

Entities

T ::= MA, delim, RA, (delim, MA, delim, RA)+, (delim, MK, delim, RK)*
B ::= MA, delim, MB, delim, DA, delim, DB
K ::= MK, delim, DK
A ::= MA, delim, DA

Descriptors

DB ::= uwords
DK ::= uwords
DA ::= uwords

Mnemonics

MB ::= (upper |number){3}
MK ::= (upper |number){3}
MA ::= (upper |number){2}

Roles

RK ::= lwords
RA ::= lwords

Primitives

historization ::= ‘ValidFrom’
identity ::= ‘ID’
delim ::= ‘ ’
lwords ::= (lower)+, (uword)?
uwords ::= (upper, (lower |number)*)+
number ::= [0-9]
upper ::= [A-Z]
lower ::= [a-z]

Figure 1: A suggested naming convention described in Extended Backus-Naur
Form with regular expressions.

2



‘MA’ with the regular expression: (upper | number){2}, where exactly two times
either of the primitives ‘upper’ or ‘number’ occur.

EBNF can only describe syntax. However, the names derived from the
suggested namning conventions also contain semantics. From the names it
should be possible to deduce the relationships between entities. The procedure
to get names with such semantics is simple. The EBNF in Figure 1 should be
followed bottom-up and every production rule exhausted before moving up to
the next. If a production rule contains a reference to a previous production rule,
a string among those already created in the referenced rule must be selected. For
example, when the production rule for the mnemonic ‘MA’ is exhausted, the result
is a set of mnemonics (two upper case letters or numbers) for anchors. In the
anchor model in Figure 3, there are four anchors, yielding the set of mnemonics
{‘AC’, ‘PE’, ‘ST’, ‘PR’}. The production rule for the name of an attribute ‘B’
is ‘MA, delim, MB, delim, DA, delim, DB’, which starts with a reference to
‘MA’, allowing only one of the four strings in the set to be used. Which of the
four is selected is determined by the actual relationships, such that an attribute
takes the mnemonic of the anchor it belongs to. Given the example, exhausting
the production rule for ‘B’ and the anchor having the mnemonic ‘AC’ will
produce the set {‘AC NAM Actor Name’, ‘AC PLV Actor ProfessionalLevel’,
‘AC GEN Actor Gender’}. From these attribute names it is easy to determine
which anchor they belong to.

While mnemonics are short unique strings, names also contain descrip-
tors, which are longer strings intelligible enough to give an understanding of
what entities represent. For example, the anchor named ‘AC Actor’ has the
mnemonic ‘AC’ and the descriptor ‘Actor’. One attribute of this anchor is named
‘AC NAM Actor Name’, starting with the mnemonic of the anchor to which it
belongs, followed by a mnemonic for the attribute, ‘NAM’, and the descriptors
for both the anchor and the attribute. In the tie named ‘PE in AC wasCast’
the mnemonics of the adjoining anchors, ‘AC’ and ‘PE’, are present together
with the names of the roles they have in the tie. These conventions will yield
unique, but not unambiguous names, i.e. the order of the adjoined anchors and
knots in a tie may change. For example the two names ‘PE in AC wasCast’ and
‘AC wasCast PE in’ both refer to the same tie.

Parts are named according to the functions described in Figure 2. The
conventions for parts in Figure 1 also contain references to earlier production rules,
giving those names semantics as well. The production rule naming the anchor
identity for an attribute is ‘MA, delim, identity’. From the set of available anchor
mnemonics, the one for the anchor that is the domain of the attribute should be
chosen. For example, in the attribute named ‘AC NAM Actor Name’ the identity
part is named ‘AC ID’, the data type part is named ‘AC NAM Actor Name’,
and the time type part is named ‘AC NAM ValidFrom’. Likewise the anchor
that is the type of an anchor role in a tie should be chosen.

3



Function Naming part Input

NT(T ) time type tie
NIK(T ) knot identity tie
NIA(T ) anchor identity tie
NT(B) time type attribute
ND(B) data type attribute
NIK(B) knot identity attribute
NIA(B) anchor identity attribute
ND(K) data type knot
NI(K) identity knot
NI(A) identity anchor

Figure 2: Functions naming parts for anchors, knots, attributes, and ties.

PAT_ParentalTypePLV_ProfessionalLevel

RAT_Rating

GEN_Gender

AC_Actor
PR_Program

PE_Performance
ST_Stage

AC_PLV_Actor_ProfessionalLevel

ST_NAM_Stage_Name PE_DAT_Performance_Date

ST_LOC_Stage_Location

PE_AUD_Performance_Audience

PE_REV_Performance_Revenue

AC_GEN_Actor_Gender

AC_NAM_Actor_Name

PR_NAM_Program_Name

PE_at_PR_wasPlayed

AC_part_PR_in_RAT_got

PE_wasHeld_ST_atLocation

ST_atLocation_PR_isPlaying

AC_parent_AC_child_PAT_having

PE_in_AC_wasCast

Figure 3: An anchor model

4


