From Anchor Model to Relational Database

L. Rönnbäck

O. Regardt

lars.ronnback@resight.se Resight, Kungsholms Strand 179, 112 48 Stockholm olle.regardt@teracom.se Teracom, Kaknästornet, 102 52 Stockholm

M. Bergholtz, P. Johannesson, P. Wohed maria@dsv.su.se, pajo@dsv.su.se, petia@dsv.su.se

DSV, Stockholm University, Sweden

September 15, 2010

In this paper the rules for translating an anchor schema into a relational database schema are presented. Throughout the paper an example of the anchor model from Figure 1 is used.

Figure 1: An anchor model

An anchor schema can be transformed into a relational database schema through the translation rules presented below. For each anchor, knot, attribute, and tie in an anchor schema there exists a translation rule that maps it into a relational database construct such as a relation schema (table definition) or column. The names used in the relational database are derived from the naming convention which can be found on . The highly decomposed relational database schemas that result from anchor schemas facilitate traceability through metadata, capturing information such as creator, source, and time of creation. Although important, metadata is not discussed further since its use does not differ from that of other modeling techniques.

Anchors

An anchor A is mapped to a relation schema A(S), where $S = N_{\mathbb{I}}(A)$. The domain of S is \mathbb{I} . S is the primary key of the relation schema A(S).

AC_Actor
AC_ID (PK)
#4711 #4712 #4713
INTEGER

Figure 2: Example rows from the anchor AC_Actor.

For example the anchor AC_Actor with INTEGER as domain, see Figure 2, corresponds to the relation schema AC_Actor(AC_ID).

Knots

A knot K with range \mathbb{D} is mapped to a relation schema K(I, V), where $I = N_{\mathbb{I}}(K)$ and $V = N_{\mathbb{D}}(K)$. The domain of I is \mathbb{I} , and the domain of V is \mathbb{D} . I is the primary key.

GEN_Gender	
GEN_ID (PK)	$\operatorname{GEN}_{\operatorname{-}} \! \operatorname{Gender}$
#0	'Male'
#1	'Female'
BIT	STRING

Figure 3: Example rows from the knot GEN_Gender.

For example the knot GEN_Gender with STRING as range and an extension over BIT \times STRING, see Figure 3, corresponds to the relation schema GEN_Gender(GEN_ID, GEN_Gender).

Static Attributes

A static attribute B_S with domain A and range \mathbb{D} is mapped to a relation schema B(I, V), where $I = N_{\mathbb{I}A}(A)$ and $V = N_{\mathbb{D}}(B)$. The domain of I is \mathbb{I} and the domain of V is \mathbb{D} . The column I is a primary key of B and a foreign key with respect to the relation schema A(S).

For example the attribute PE_DAT_Performance_Date with domain PE_Performance, DATETIME as range, and an extension over INTEGER × DATETIME, see Figure 4, corresponds to the relation schema PE_DAT_Performance_Date(PE_ID, PE_DAT_Performance_Date).

PE_DAT_Performance_Date		
PE_ID (PK, FK) PE_DAT_Performance_Da		
#911	1994-12-10 20:00	
#912	1994-12-15 21:30	
#913	1994-12-22 19:30	
INTEGER	DATETIME	

Figure 4: Example rows from the static attribute PE_DAT_Performance_Date.

Historized Attributes

A historized attribute B_H with domain A, range \mathbb{D} and time range \mathbb{T} is mapped to a relation schema B(I, V, P), where $I = N_{\mathbb{T}}(A)$, $V = N_{\mathbb{D}}(B)$ and $P = N_{\mathbb{T}}(B)$. The domain of I is \mathbb{I} , the domain of V is \mathbb{D} and the domain of P is \mathbb{T} . The columns I and P together constitute a primary key of the relation schema B. The column I is a foreign key with respect to the relation schema A(S).

AC_NAM_Actor_Name			
AC_ID (PK, FK)	AC_NAM_Actor_Name	AC_NAM_ValidFrom (PK)	
#4711 #4711 #4712	'Arfle B. Gloop' 'Voider Foobar' 'Nathalie Roba'	1972-08-20 1999-09-19 1989-09-21	
INTEGER	STRING	DATE	

Figure 5: Example rows from the historized attribute AC_NAM_Actor_Name.

For example the historized attribute AC_NAM_Actor_Name with AC_Actor as domain, DATE as time range, and an extension over INTEGER × STRING × DATE, see Figure 5, corresponds to the relation schema AC_NAM_Actor_Name(AC_ID, AC_NAM_Actor_Name, AC_NAM_ValidFrom).

Knotted Static Attributes

A knotted static attribute B_{KS} with domain A and range K is mapped to a relation schema $B(I_1, I_2)$, where $I_1 = N_{\mathbb{I}A}(A)$ and $I_2 = N_{\mathbb{I}K}(K)$. The domain of I_1 is \mathbb{I} and the domain of I_2 is \mathbb{I} . The column I_1 is a primary key of B and a foreign key with respect to the relation schema A(S). The column I_2 is a foreign key with respect to the relation schema K(I, V).

$AC_GEN_Actor_Gender$		
AC_ID (PK, FK)	GEN_ID (FK)	
#4711 #4712 #4713	#0 #1 #1	
INTEGER	BIT	

Figure 6: Example rows from the knotted static attribute AC_GEN_Actor_Gender.

For example the knotted static attribute AC_GEN_Actor_Gender with AC_Actor as domain, GEN_Gender as range, and an extension over INTEGER \times BIT, see Figure 6 corresponds to the relation schema AC_GEN_Actor_Gender(AC_ID, GEN_ID).

Knotted Historized Attributes

A knotted historized attribute B_{KH} with domain A, range K, and time range \mathbb{T} is mapped to a relation schema $B(I_1, I_2, P)$, where $I_1 = N_{\mathbb{I}A}(A)$, $I_2 = N_{\mathbb{I}K}(K)$ and $P = N_{\mathbb{T}}(B)$. The domain of I_1 is \mathbb{I} , the domain of I_2 is \mathbb{I} and the domain of P is \mathbb{T} . The columns I_1 and P together constitute a primary key of the relation schema B. The column I_1 is a foreign key with respect to the relation schema A(S). The column I_2 is a foreign key with respect to the relation schema K(I, V).

$AC_PLV_Actor_ProfessionalLevel$			
AC_ID (PK, FK)	$PLV_ID (FK)$	AC_PLV_ValidFrom (PK)	
#4711 #4711 #4712	#4 #5 #3	1999-04-21 2003-08-21 1999-04-21	
INTEGER	TINYINT	DATE	

Figure 7: Example rows from the knotted historized attribute AC_PLV_Actor_ProfessionalLevel.

For example the knotted historized attribute AC_PLV_Actor_ProfessionalLevel with AC_Actor as domain, PLV_ProfessionalLevel as range, DATE as time range, and an extension over INTEGER×TINYINT×DATE, see Figure 7, corresponds to the relation schema AC_PLV_Actor_ProfessionalLevel(AC_ID, PLV_ID, AC_PLV_Valid-From).

Static Ties

A static tie $T_S = \{R_1, \ldots, R_n\}, n \geq 2$, is mapped to a relation schema $T(M_1, \ldots, M_n)$ using an orderpreserving map, such that R_i is mapped to M_i given a total order on T_S . Every column M_i is a foreign key with respect to the relation schema $A_i(S)$, where A_i is the type of the anchor role $R_i, M_i = N_{\mathbb{I}A}(A_i)$, and the domain of M_i is the type of R_i . The primary key of the relation schema T is I where I is the identifier of the static tie T_S .

$PE_{in}AC_{was}Cast$	
PE_ID_in (PK, FK)	$AC_ID_wasCast (PK, FK)$
#911 #912 #913	#4711 #4711 #4712
INTEGER	INTEGER

Figure 8: Example rows from the static tie PE_in_AC_wasCast.

For example the static tie $PE_{in}AC_{was}Cast = \{in, wasCast\}$ having the type of *in* as the anchor $PE_Performance$, the type of wasCast as the anchor $PE_Performance$, and an extension over INTEGER × INTEGER, see Figure 8, corresponds to the relation schema $PE_{in}AC_{was}Cast(PE_ID_{in}, AC_ID_{was}Cast)$, with the primary key $PE_ID_{in}, AC_ID_{was}Cast$.

Historized Ties

A historized tie $T_H = \{R_1, \ldots, R_n, P\}, n \ge 2$ is mapped to a relation schema $T(M_1, \ldots, M_n, P)$ using an order-preserving map, such that R_i is mapped to M_i given a total order on T_H . Every column M_i is a foreign key with respect to the relation schema $A_i(S)$, where A_i is the type of the anchor role $R_i, M_i = N_{\mathbb{I}A}(A_i)$,

the domain of M_i is the type of R_i , and $P = N_{\mathbb{T}}(B)$ is a column with the domain \mathbb{T} . The primary key of the relation schema T is I where I is the identifier of the historized tie T_H .

ST_athocation_T_t_ist_laying		
ST_ID_atLocation (PK, FK)	$PR_ID_isPlaying (FK)$	$ST_atLocation_PR_isPlaying_ValidFrom~(PK)$
#55 #55	#17 #23	2003-12-13
#56	#23 #17	2003-12-31
INTEGER	INTEGER	DATE

ST_atLocation_PR_isPlaying

Figure 9: Example rows from the historized tie ST_atLocation_PR_isPlaying.

For example the historized tie ST_atLocation_PR_isPlaying = {atLocation, isPlaying, DATE} having the type of atLocation as the anchor ST_Stage, the type of isPlaying as the anchor PR_Program, and an extension over INTEGER × INTEGER × DATE, see Figure 9, corresponds to the relation schema ST_atLocation_PR_is-Playing(ST_ID_atLocation, PR_ID_isPlaying, ST_atLocation_PR_isPlaying_ValidFrom), with the primary key ST_ID_atLocation, ST_atLocation_PR_isPlaying_ValidFrom.

Knotted Static Ties

A knotted static tie $T_{KS} = \{R_1, \ldots, R_n, S_1, \ldots, S_m\}, n \ge 2$ and $m \ge 1$, is mapped to a relation schema $T(M_1, \ldots, M_n, N_1, \ldots, N_m)$ using an order-preserving map, such that R_i is mapped to M_i and S_j is mapped to N_j given a total order on T_{KS} . Every column M_i is a foreign key with respect to the relation schema $A_i(S)$, where A_i is the type of the anchor role $R_i, M_i = N_{\mathbb{I}A}(A_i)$, and the domain of M_i is the type of R_i . Every column N_j is a foreign key with respect to the relation schema $K_j(I, V)$, where K_j is the type of the knot role $S_j, N_j = N_{\mathbb{I}K}(K_j)$, and the domain of N_j is the type of S_j . The primary key of the relation schema T is I where I is the identifier of the knotted static tie T_{KS} .

AC_parent_AC_child_PAT_having			
AC_ID_parent (PK, FK)	AC_ID_child (PK, FK)	PAT_ID_having (PK, FK)	
#4711 #4712 #4712	#4713 #4713 #4714	#1 #0 #0	
INTEGER	INTEGER	BIT	

Figure 10: Example rows from the knotted static tie AC_parent_AC_child_PAT_having.

For example the knotted static tie AC_parent_AC_child_PAT_having = {parent, child, having} having the type of parent and child as the anchor AC_Actor, the type of having as the knot PAT_ParentalType, and an extension over INTEGER × INTEGER × BIT, see Figure 10, corresponds to the relation schema AC_parent_AC_child_PAT_having(AC_ID_parent, AC_ID_child, PAT_ID_having), with the primary key AC_ID_parent, AC_ID_child, PAT_ID_having.

Knotted Historized Ties

A knotted historized tie $T_{KH} = \{R_1, \ldots, R_n, S_1, \ldots, S_m, P\}$, $n \geq 2$ and $m \geq 1$, is mapped to a relation schema $T(M_1, \ldots, M_n, N_1, \ldots, N_m, P)$ using an order-preserving map, such that R_i is mapped to M_i and S_j is mapped to N_j given a total order on T_{KH} . Every column M_i is a foreign key with respect to the relation schema $A_i(S)$, where A_i is the type of the anchor role R_i , $M_i = N_{\mathbb{I}A}(A_i)$, and the domain of M_i is the type

of R_i . Every column N_j is a foreign key with respect to the relation schema $K_j(I, V)$, where K_j is the type of the knot role S_j , $N_j = N_{\mathbb{T}K}(K_j)$, and the domain of N_j is the type of S_j . The column $P = N_{\mathbb{T}}(B)$ has the domain \mathbb{T} . The primary key of the relation schema T is I where I is the identifier of the knotted historized tie T_{KH} .

110-part=1 1t=m=ttr11=go	.0		
AC_ID_part (PK, FK)	PR_ID_in (PK, FK)	RAT_ID_got (FK)	$\label{eq:ac_part_PR_in_RAT_got_ValidFrom} AC_part_PR_in_RAT_got_ValidFrom \ (PK)$
#4711	#17	#8	2005-03-12
#4711	#17	#10	2008-08-29
#4712	#17	#10	2006-10-17
INTEGER	INTEGER	TINYINT	DATE

AC_part_PR_in_RAT_got

Figure 11: Example rows from the knotted historized tie AC_part_PR_in_RAT_got.

For example the knotted historized tie AC_part_PR_in_RAT_got = {part, in, got, DATE} having the type of part as the anchor AC_Actor, the type of in as the anchor PR_Program, the type of got as the knot RAT_Rating, and an extension over INTEGER × INTEGER × TINYINT × DATE, see Figure 11, corresponds to the relation schema AC_part_PR_in_RAT_got(AC_ID_part, PR_ID_in, RAT_ID_got, AC_part_PR_in_RAT_got_ValidFrom), with the primary key AC_ID_part, PR_ID_in, AC_part_PR_in_RAT_got_ValidFrom.

Example Schema

The relational database schema resulting from the Anchor model in Figure 1 is shown in Figure 12. It contains anchor, knot, attribute, and tie schemas in that order, where primary keys are marked with asterisks.

Anchor Schema	
AC_Actor	(AC_ID*)
PR_Program	(PR_ID*)
ST_Stage	(ST_ID*)
PE_Performance	(PE_ID*)
Knot Schema	
GEN_Gender	(GEN_ID*, GEN_Gender)
PLV_ProfessionalLevel	(PLV_ID*, PLV_ProfessionalLevel)
RAT_Rating	(RAT_ID*, RAT_Rating)
PAT_ParentalType	(PAT_ID*, PAT_ParentalType)
Attribute Schema	
AC_GEN_Actor_Gender	(AC_ID*, GEN_ID)
AC_PIV_Actor_ProfessionalLevel	(AC_ID*, PLV_ID, AC_PLV_ValidFrom*)
AC_NAM_Actor_Name	(AC_ID*, AC_NAM_Actor_Name, AC_PLV_ValidFrom*)
PR_NAM_Program_Name	(PR_ID*, PR_NAM_Program_Name)
ST_LOC_Stage_Location	(ST_ID*, ST_LOC_Stage_Location)
ST_NAM_Stage_Name	(ST_ID*, ST_NAM_Stage_Name, ST_NAM_ValidFrom*)
PE_DAT_Performance_Date	(PE_ID*, PE_DAT_Performance_Date)
PE_REV_Performance_Revenue	(PE_ID*, PE_REV_Performance_Revenue)
PE_AUD_Performance_Audience	(PE_ID*, PE_AUD_Performance_Audience)
Tie Schema	
AC_parent_AC_child_PAT_having	(AC_ID_parent*, AC_ID_child*, PAT_ID_having*)
AC_part_PR_in_RAT_got	(AC_ID_part*, PR_ID_in*, RAT_ID_got, AC_part_PR_in_RAT_got_ValidFrom*)
ST_atLocation_PR_isPlaying	(ST_ID_atLocation*, PR_ID_isPlaying, ST_atLocation_PR_isPlaying_ValidFrom*)
PE_in_AC_wasCast	(PE_ID_in*, AC_ID_wasCast*)
PE_at_PR_wasPlayed	(PE_ID_at*, PR_ID_wasPlayed)
PE_wasHeld_ST_atLocation	(PE_ID_wasHeld*, ST_ID_atLocation)

Figure 12: The relational schema for the anchor schema in Figure 1, with primary keys marked by asterisks.