

- ANCHOR -
(0) Copyleft Lars Rönnbäck 2015
www.uptochange.com and www.anchormodeling.com
Public domain photo from pexels.com

definition of a posit and its dereferencing set

A posit is a triple, $\left[\left\{\left(i_{1}, r_{1}\right), \ldots,\left(i_{n}, r_{n}\right)\right\}, v, t\right]$, where the first element is a set of ordered pairs, the second a data value, and the third a time point. The set is called a dereferencing set, where each member is an ordered pair of a unique identifier and ástring.

definition of an assertion

Concurrent-reliance temporal:
An assertion is a predicate, assert (P, p, α, T), taking four arguments, where the first argument is a unique identifier, the second a posit, the third a real number in the range $[-1,1]$, and the fourth a time point.
Uni-temporal:
An assertion is a predicate, assert (p), taking a posit as its argument.

It's Monday. Archie invites you to meet him and Bella for lunch on Friday.

It's Monday. Arcbie invites you to meet him and Bella for lunch on Friday.

POSITING TIME

CHANGING TIME

It's Monday. Arcbie invites you to meet him and Bella for lunch on Friday.

POSITING TIME
 HAPPENING TIME

CHANGING TIME

It's Monday. Arcbie invites you to meet him and Bella for lunch on Friday.
POSITING TIME
HAPPENING TIME
CHANGING TIME

It's Monday. Archie invites you to meet him and Bella for lunch on Friday. POSITING TIME PARTICIPANTS HAPPENING TIME
CHANGING TIME

It's Monday. Archie invites you to meet him and Bella for lunch on Friday. POSITING TIME

PARTICIPANTS
HAPPENING TIME CHANGING TIME

 (The Database, [\{(\#42, attendees)\}, 2, monday], 1, MONDAY) \}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY),
(Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY)\}

It's Monday. Archie invites you to meet him and Bella for lunch on Friday.

Concurrent-reliance-temporal Anchor Modeling

Someone is at some time somewbat sure about sometbing (or itsopposite).

IDENTITIES
$\{($ Archie, $\quad[\{(\# 42$,
(Archie, $\quad[\{(\# 42$,
(The Database, [\{(\#42, attendees)\},
ROLES
type) \}, date)\}, $[\{(\# 42$, meeting), (\#1, participant) $\}$,
$[\{(\# 42$, meeting), (\#2, participant) $\}$, (Bella, [\{(\#42, meeting), (\#2, participant)\}, (You, [\{(\#42, meeting), (\#3, participant)\},

It's Monday. Archie invites you to meet him and Bella for lunch on Friday.

CHANGING TIME

Uni-temporal

 Anchor ModelingEveryone is always completely sure about all the same tbings (and no opposites).

(The Database,

IDENTITIES

[\{(\#42,
[\{(\#42, attendees) \},
ROLES
type) \}, date) \},
 [\{(\#42, meeting), (\#1, participant)\}, [\{(\#42, meeting), [\{(\#42, meeting), (\#3, participant)\},

REM) Bu IIES
n
\{(Archie,
(Bella,
(You,

VALUES
lunch
Friday
2, monday]
],
],
(\#2, participant)\} accepted, monday] , 1, MONDAY),

An assertion is called positive when the reliability is above zero. (Archie, [\{(\#42, date)\}, Friday], 1, MONDAY)

Archie is completely certain that the lunch is on Friday.
$\begin{array}{lll}\{(A r c h i e, ~[\{(\# 42, & \text { type })\}, & \text { lunch } \\ \text { (Archie, }[\{(\# 42, & \text { date })\}, & \text { Friday }\end{array}$ 2, monday], 1, MONDAY) \}
(The Database, [\{(\#42, attendees) $\}$,
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY) \}

An assertion is called completely uncertain when the reliability is zero.
(Archie, [\{(\#42, date)\}, Friday], 0, MONDAY)
Arcbie bas absolutely no idea when the lunch is supposed to be beld.
\{(Archie, [\{(\#42, type) $\},$
(Archie, $[\{(\# 42$,
date $)\}$,
Friday 2, monday], 1, MONDAY)\}
(The Database, [\{(\#42, attendees) $\}$,
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY)\}

A reassertion asserts a posit and its reliability again at a later positing time. (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, TUESDAY)

On Tuesday you state that you are still pending since Monday.

> | $\{($ Archie,$[\{(\# 42$, | type $)\}$, | lunch |
| :--- | :--- | :--- |
| (Archie, $[\{(\# 42$, | date $)\}$, | Friday $], 1$, MONDAY), |

(The Database, [\{(\#42, attendees)\}, 2, monday], 1, MONDAY)\}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY)\}

A revaluation asserts a posit to a different reliability at a later positing time. (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 0.5, TUESDAY)

On Tuesday Bella states that what she said on Monday was that she only might attend on Friday.

$$
\begin{array}{llll}
\{(\text { Archie },[\{(\# 42, & \text { type })\}, & \text { lunch } \\
\text { (Archie, }[\{(\# 42, & \text { date })\}, & \text { Friday }], 1, \text { MONDAY), }
\end{array}
$$

(The Database, [\{(\#42, attendees)\}, 2, monday], 1, MONDAY) \}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY) \}

A restatement is when the preceding value over changing time is the same.

(The Database, [\{(\#42, attendees)\}, 2, tuesday], 1, WEDNESDAY)
On Wednesday the Database states that there still were two attendees on Tuesday.

$\{(A r c h i e, ~[\{(\# 42$,	type $)\}$,	lunch
(Archie, $[\{(\# 42$,	date $)\}$,	Friday

(The Database, [\{(\#42, attendees)\}, 2, monday], 1, MONDAY)\}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY) \}

A change is when the preceding value over changing time is different. (You, [\{(\#42, meeting), (\#3, participant)\}, accepted, wednesday], 1, WEDNESDAY)

You accepted the meeting on Wednesday.

(The Database, [\{(\#42, attendeés)\}, 3, wednesday], 1 , THURSDAY)
The Database states that the number of attendees
bas cbanged to tbree since Wednesday.

$$
\begin{array}{lll}
\{(\text { Archie, }[\{(\# 42, & \text { type })\}, & \text { lunch } \\
\text { (Archie, }[\{(\# 42, & \text { date })\}, & \text { Friday }
\end{array}
$$

(The Database, [\{(\#42, attendees) \}, 2, monday], 1, MONDAY) \}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY) \}

A retraction is when a reliable posit is now considered completely unreliable. (Archie, [\{(\#42, type) \}, lunch], 0, THURSDAY)

On Thursday Archie cancels the lunch altogetber.
$\{($ Archie, $[\{(\# 42$,
type $)\}$,
Archie, $[\{(\# 42$,
date $)\}$,
Friday
(The Database, [\{(\#42, attendees) \},
2, monday], 1, MONDAY)\}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY) \}

A correction is a retraction of the erroneous posit and a simultaneous assertion.

(Archie, [\{(\#42, type)\}, lunch], 0, THURSDAY)

 (Archie, [\{(\#42, type)\}, dinner], 1, THURSDAY) On Thursday Arcbie realises that be intended to meet for dinner instead of luncb.$\{($ Archie, $[\{(\# 42$,
type $)\}$,
Archie, $[\{(\# 42$,
date $)\}$,
Friday
(The Database, [\{(\#42, attendees) \}, 2, monday], 1, MONDAY)\}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY)\}

With decisiveness only one value for each identity, role, and time may be asserted.
This excludes complete uncertainty, for whicb a positor may be oblivious to arbitrarily many posits.

> | $\{($ Archie,$[\{(\# 42$, | type $)\}$, | lunch |
| :--- | :--- | :--- |
| (Archie, $[\{(\# 42$, | date $)\}$, | Friday $], 1$, MONDAY), |

2, monday], 1, MONDAY)\}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY)\}

With indecisiveness many values for each identity, role, and time may be asserted.
\{(Archie, [\{(\#42, type) \}, breakfast], 0.2, THURSDAY), (Archie, [\{(\#42, type)\}, lunch], 0.3, THURSDAY), (Archie, $[\{(\# 42$, type $)\}$, dinner], 0.5, THURSDAY) $\}$

As long as the reliabilities obey:
$\frac{1}{2} \sum_{i=1}^{n}\left[1-\alpha_{i}\left|\alpha_{i}\right|^{-1}, \sum_{i=1}^{n} \alpha_{i} \leq 1\right.$
the axiom of non-contradiction.
$0.5(1-0.2 /|0.2|+1-0.3 /|0.3|+1-0.5 /|0.5|)+(0.2+0.3+0.5)=1$
$\{($ Archie, $[\{(\# 42$,
type $)\}$,
lunch
date $)\}$,
Friday
(The Database, [\{(\#42, attendees) \}, 2, monday], 1, MONDAY) \}
\{(Archie, [\{(\#42, meeting), (\#1, participant)\}, accepted, monday], 1, MONDAY), (Bella, [\{(\#42, meeting), (\#2, participant)\}, accepted, monday], 1, MONDAY), (You, [\{(\#42, meeting), (\#3, participant)\}, pending, monday], 1, MONDAY) \}

definition of an anchor

Concurrent-reliance-temporal:
An anchor is a predicate, anchor (P, a, c, α, I), taking five arguments, where the first argument is a unique identifier, the second an assertion, the third a string, and the fourth a real number in the range $[-1,1]$, and the fourth a time point.
Uni-temporal:
An anchor is a predicate, anchor (a, c), taking two arguments, where the first argument is an assertion and the second a string.

It's Monday. Archie invites you to meet him and Bella for lunch on Friday.

It's Monday. Archie invites you to meet him and Bella for lunch on Friday.

