
Anchor for Vaulters
Lars Rönnbäck

Originally for the DVEE Summit in Stockholm, October 2019 No rights reserved

https://en.wikipedia.org/wiki/Data_vault_modeling

https://en.wikipedia.org/wiki/Data_vault_modeling

http://www.anchormodeling.com/modeler/latest

EmploymentStatus
Gender��st

Store
Emp	o
ee

�ame

�o�at�on

�ddress

��one

�ersonal�um�er

�ast�ame

��rst�ame

Gender

at
employe	

���etly

http://www.anchormodeling.com/modeler/latest

sisula

EM_ADR_Employee_Address
EM_ADR_EM_ID
EM_ADR_Employee_Address
EM_ADR_ChangedAt
Metadata_EM_ADR

EM_Employee
EM_ID
Metadata_EM

EM_FNA_Employee_FirstName
EM_FNA_EM_ID
EM_FNA_Employee_FirstName
EM_FNA_ChangedAt
Metadata_EM_FNA

EM_GEN_Employee_Gender
EM_GEN_EM_ID
EM_GEN_GEN_ID
EM_GEN_ChangedAt
Metadata_EM_GEN

EM_LNA_Employee_LastName
EM_LNA_EM_ID
EM_LNA_Employee_LastName
EM_LNA_ChangedAt
Metadata_EM_LNA

EM_PHO_Employee_Phone
EM_PHO_EM_ID
EM_PHO_Employee_Phone
EM_PHO_ChangedAt
Metadata_EM_PHO

EM_PIN_Employee_PersonalNumber
EM_PIN_EM_ID
EM_PIN_Employee_PersonalNumber
EM_PIN_ChangedAt
Metadata_EM_PIN

EST_EmploymentStatus
E!"_ID
E!"_Employment!tatus
Metadata_E!"

GEN_GenderList
GEN_ID
GEN_GenderList
Metadata_GEN

ST_at_EM_employed_EST_!urrently
!"_ID_at
EM_ID_employed
E!"_ID_#urrently
!"_at_EM_employed_E!"_#urrently_ChangedAt
Metadata_!"_at_EM_employed_E!"_#urrently

ST_LO"_Store_Lo!ation
!"_LOC_!"_ID
!"_LOC_!tore_Lo#ation
Metadata_!"_LOC

ST_NAM_Store_Name
!"_NAM_!"_ID
!"_NAM_!tore_Name
!"_NAM_ChangedAt
Metadata_!"_NAM

ST_Store
!"_ID
Metadata_!"

_S!hema
$ersion
a#ti$ation
%s#hema&

#A_#at!h $md%
'A_ID
'A_Dummy

#A_LDA_#at!h_LoadDate $md%
'A_LDA_'A_ID
'A_LDA_'at#h_LoadDate

#A_SR"_#at!h_Re!ordSour!e $md%
'A_!RC_'A_ID
'A_!RC_'at#h_Re#ord!our#e

Data Vault

Business Key

- One key is the master key
(less flexibility)

- The master key is stable
(makes assumptions about the future)

- The master key is available in the hub
(faster loading performance)

- No real explanation of how to manage other
ways to identify the same thing
(confusing)

- Hashing is (maybe) encouraged
(the surrogate key encodes the domain)

Anchor
Natural keys

- Every candidate key is treated equally
(more flexibility)

- Candidate keys may change over time
(assumes nothing about the future)

- Keys are spread out in the model
(slower loading performance)

- Every possible way to identify something is
equally valid
(clear, but may complicate ETL)

- Hashing is impossible
(the surrogate key cannot carry meaning)

Data Vault

Changes at Loading

- Captured from the perspective of the
database
(no requirements on the sources)

- Temporally inconsistent data can be stored
(relies on ETL if this is undesirable)

- Inconsistencies must be resolved at read time
(faster write, slower query performance)

- The time when something changed in the
domain is not part of the primary key
(more complicated point in time logic)

Anchor
Changes from the Domain

- Captured from the perspective of the domain
being modeled
(sources should be change-aware, fall-back to
database perspective)

- Temporally inconsistent data cannot be stored
(database will enforce consistency)

- Inconsistencies must be resolved at write time
(slower write, faster query performance)

- The time when something changed in the
domain is part of the primary key
(less complicated point in time logic)

Data Vault
Grouping

- Attributes are grouped by rate of change or
by what they represent
(no clear cut rule)

- To see what changed, the values from the
previous row are needed
(slower change detection)

- A typical query needs a few joins
(can be faster, can be slower, depending on the
selectivity in the query)

- Null values may exist
(not optimal for sparse data)

Anchor

6NF

- Every attribute becomes its own table
(no room for creativity)

- Changes are tracked independently of each
other
(faster change detection)

- A typical query needs a lot of joins
(can be faster, can be slower, depending on the
selectivity in the query)

- Nulls become the absence of rows
(optimal for sparse data)

Data Vault

Implementation variety

- No naming convention
(harder to swap between DWs)

- Some degrees of freedom when it comes to
implementation details
(different DWs may use different flavors)

- Largest known Data Vault implementation is
for the U.S. Government at 15 petabytes.
(not much more is public)

Anchor
Implementation consistency

- Naming convention
(easier to swap between DWs)

- Almost no degrees of freedom when it comes to
implementation details
(different DWs have the same flavor)

- Largest known Anchor implementation is for
avito.ru at 279 terabytes on HPE Vertica.
(scientific papers available with a case study)

http://avito.ru

Data Vault

Auditability

- Links are always many-to-many
(may rely on ETL to enforce cardinality)

- Column values can range over the span of the
data type
(may rely on ETL to enforce constraints)

- Values may disappear (become NULL)
(less up-front complexity)

- Inconsistencies can be analyzed and
managed before the next layer
(source corrections can be done asynchronously)

- Raw data always available
(reloading doesn’t need to touch the source)

Anchor
Correctness

- Ties always have their cardinality specified
(the database will enforce cardinality)

- Column values may be constrained to certain
intervals
(the database will enforce constraints)

- Values are assumed exhaustive (become
explicitly ”unknown”)
(more up-front complexity)

- Inconsistencies must be managed, but negates
the need for layered architectures
(source corrections may need to be expedient)

- Raw data rarely available in full
(reloading needs to touch the source again)

Data Vault
Flavorful

- Infinitely extendable
(great ideas can be utilized immediately)

- Extensions, such as bitemporality, may be
added in any fashion
(less coherency)

- Models can be created in almost all modeling
tools, with some code generated
(no lock-down, but most tools are commercial)

- Not overly dependent on query optimization
features
(works well in most databases)

- Dangling references
(any load order, disables some query
optimization)

Anchor
Stringent

- Controlled extensions
(if it doesn’t adhere, it’s something else)

- Extensions are added to the methodology after
careful research
(coherent, but features may take time to appear)

- Models are normally created using the Online
Anchor Modeler, lots of code generated
(dependent on a single tool, but it is free)

- Very particular about query optimization
features being present
(works well only in very recent databases)

- PK – FK on every table
(particular load order, enables all query
optimization)

Data Vault and Anchor

Built for managing change
Decouple mutable and immutable information

Differentiate between entities and relationships
Have features that reduce complexity

Care for the core concepts in the domain
Insert Only

Try to live up to modern requirements
Consider schema evolution

Have modeling tools that generate code
Have tools for metadata driven automation

Both can twine!
Still not as widely adopted as Dimensional…

Variations of ENSEMBLE MODELING

