| TEMPORAL.
JOINS

AND
TWINES

Lars Ronnback

2023-11-28

Yyvyy

https://www.anchormodeling.com/J3-lets-twine-again-J3/

47
“,

ey
https://www.researchgate.net/publication/330798405_Temporal_Dimensional Modeling

https://www.anchormodeling.com/%E2%99%AB-lets-twine-again-%E2%99%AB/
https://www.researchgate.net/publication/330798405_Temporal_Dimensional_Modeling

NON-TEMPORAL. INNER JOIN

select *

from PERSON p

join HAIR COLOR hc

on hc.Person Id = p.Person Id

PERSON HAIR _COLOR
Person_Id Person_Id HairColor
1 (1) to (1) 1 Blonde

< >
2 2 Brown
3 3 Gray
drop table if exists PERSON; drop table if exists HAIR COLOR;
create table PERSON (create table HAIR_COLOR (
Person Id int not null primary key Person Id int not null primary key foreign key references PERSON (Person Id),

)i HairColor varchar(42) not null
insert into PERSON values (1), (2), (3););

insert into HAIR COLOR values (1, 'Blonde'), (2, 'Brown'), (3, 'Gray');

NON-TEMPORAL OUTER JOIN

select p.Person Id, isnull(hc.HairColor, 'Unknown')
from PERSON p

left join HAIR_ COLOR hc

on hc.Person Id = p.Person Id

PERSON
HAIR_COLOR
1 (1) to (0,1)
< » 1 Blonde
2
2 Brown
3
drop table if exists PERSON; drop table if exists HAIR COLOR;
create table PERSON (create table HAIR COLOR (
Person Id int not null primary key Person Id int not null primary key foreign key references PERSON (Person_Id),

)i HairColor varchar(42) not null
insert into PERSON values (1), (2), (3););

insert into HAIR COLOR values (1, 'Blonde'), (2, 'Brown');

TEMPORALLY INDEPENDENT INNER JOIN

PERSON

1

(1) to (*)

2

drop table if exists PERSON;
create table PERSON (

Person Id int not null primary key

)i
insert into PERSON values (1),

(2),

(3);

HAIR_COLOR
1 Blonde 2001-01-01
1 Gray 2020-12-24
> 2 Brown 2002-02-02
2 Purple 2011-11-11
2 Brown 2011-11-12
3 Gray 2001-01-01

drop table if exists HAIR COLOR;

create table HAIR COLOR (
Person Id int not null foreign key references PERSON (Person Id),
HairColor varchar(42) not null,
Valid From date not null,

primary key (Person Id, Valid From)

)i

insert into HAIR COLOR values

(1, 'Blonde', '2001-01-01"'), (1, 'Gray', '2020-12-24"),

(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown',

(3, 'Gray', '2001-01-01");

'2011-11-12"),

TEMPORALLY INDEPENDENT INNER JOIN

Person_Id HairColor Valid_From
1 Blonde 2001-01-01
2 Purple 2011-11-11
3 Gray 2001-01-01

select p.Person_ Id, hc.HairColor, hc.Valid From
from PERSON p
join (
select *
from HAIR COLOR hc sub
where hc sub.Valid From = (
select top 1 hc_at.Valid From
from HAIR COLOR hc_at
where hc_at.Person Id = hc_sub.Person_ Id
and hc at.valid From <= '2011-11-11"

What was the hair color of every person
on 11/11 of 20117

A temporally independent join can
be reduced to a non-temporal join by

der by hc at.valid F d . . :
) orcer Py he_at.Vatic Trom dese first resolving the temporality of the
) hc involved tables.

4
on hc.Person_Id = p.Person_Id;

TEMPORALLY INDEPENDENT OUTER JOIN

HAIR_COLOR

1 Blonde 2001-01-01

*
1 (1) to (0,*) 1 Gray 2020-12-24
< >
2 2 Brown 2002-02-02
3 2 Purple 2011-11-11
2 Brown 2011-11-12
drop table if exists PERSON; drop table if exists HAIR COLOR;
create table PERSON (create table HAIR COLOR (
Person Id int not null primary key Person Id int not null foreign key references PERSON (Person Id),
) HairColor varchar(42) not null,
insert into PERSON values (1), (2), (3); Valid From date not null,

primary key (Person Id, Valid From)

)i

insert into HAIR COLOR values

(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),

(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11"'), (2, 'Brown',6 '2011-11-12");

TEMPORALLY INDEPENDENT OUTER JOIN

Person_Id HairColor Valid_From
1 Blonde 2001-01-01 What was the hair color of every
2 Unknown NULL person on 31/12 of 2001?
3 Unknown NULL

select p.Person Id, isnull(hc.HairColor, 'Unknown'), hc.Valid From

from PERSON p

left join (

select *

from HAIR COLOR hc sub

where hc sub.Valid From = (
select top 1 hc_at.Valid From
from HAIR COLOR hc_at

where hc_at.Person Id = hc_sub.Person_ Id A temporally independent join can
and hec_at.Valid From <= '2001-12-31° be reduced to a non-temporal join by

order by hc at.Valid From desc)))
) / first resolving the temporality of the
) hc < involved tables.

on hc.Person_Id = p.Person_Id;

select
p.Person_Id,
case
when hc _exist.Person Id is null then 'Unknown (person)'
when hc.HairColor is null then 'Unknown (timepoint)'
else hc.HairColor
end,
hc.Valid From
from PERSON p
left join (
select *
from HAIR COLOR hc_sub
where hc sub.Valid From = (
select top 1 hc_at.Valid From Additional information is needed in

from HAIR COLOR hc at dert lve th t
where hc at.Person Id — hc sub.Person Id order 1o resolve the exact reason

and hc_at.valid From <= '2001-12-31" why a hair color is unknown.
order by hc at.Valid From desc

)

) hc
on hc.Person_Id = p.Person_Id
left join (

select distinct Person_Id
from HAIR COLOR
) hc exist
on hc exist.Person Id = p.Person Id;

TEMPORALLY DEPENDENT INNER JOIN

HAIR_COLOR

PERSON
. 1 Blonde 2001-01-01
;

. Gray 2020-12-24
1 2020-12-24 (1) to (*)
< > 2 Brown 2002-02-02
2 2011-12-13
2 Purple 2011-11-11
3 2018-08-18
2 Brown 2011-11-12
3 Gray 2001-01-01
drop table if exists PERSON; drop table if exists HAIR COLOR;
create table PERSON (create table HAIR_COLOR (
Person Id int not null primary key, Person Id int not null foreign key references PERSON (Person Id),
MemberSince date null HairColor varchar(42) not null,
) Valid From date not null,
insert into PERSON values primary key (Person Id, Valid From)
(1, '2020-12-24"), (2, '2011-12-13"),)3
(3, '2018-08-18"); insert into HAIR COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24"),
(2, 'Brown', '2002-02-02"'), (2, 'Purple', '2011-11-11"), (2, 'Brown',6 '2011-11-12"),

(3, 'Gray', '2001-01-01");

TEMPORALLY DEPENDENT INNER JOIN
PN

Person_Id HairColor MemberSince Valid_From Valid_To N

1 Gray 2020-12-24 2020-12-24 9999-12-31

2 Brown 2011-12-13 2011-11-12 9999-12-31

3 Gray 2018-08-18 2001-01-01 9999-12-31 /
N~—_—~—

What was the hair color of every person when they became a member? Valid_To might already be

materialized depending on

the style of modeling
select p.Person Id, hc.HairColor, p.MemberSince, hc.Valid From, hc.Valid To

from PERSON p
join (
select
Person Id, HairColor, Valid From,

LEAD(Valid From, 1, '9999-12-31") over (partition by Person Id order by Valid From) as Valid To

from HAIR COLOR
) hc The temporally dependent join is not

on hc.Person Id = p.Person_Id reduced to a non-temporal join and
and hc.Valid From <= p.MemberSince <

and he.valid To > p.MemberSince timepoints become a part of the join
condition.

TEMPORALLY DEPENDENT JOIN / TWINE

2009-09-09
O » MemberSince
(one)
separate
timelines
2001-01-01 2020-12-24
® ® » Valid_From

Blonde Gray (many)

TEMPORALLY DEPENDENT JOIN / TWINE

2009-09-09
O » MemberSince
(one)
separate
timelines
2001-01-01 2020-12-24
® ® » Valid_From
Blonde Gray (many)
2001-01-01 2009-09-09 2020-12-24
® O ® » Twine

TEMPORALLY DEPENDENT JOIN / TWINE

2009-09-09
O » MemberSince
(one)
separate
timelines
2001-01-01 2020-12-24
® ® » Valid_From
Blonde Gray (many)
preceding timepoint in overlapping
numbered timelines
2001-01-01 <« 2009-09-09 2020-12-24
® O ® » Twine

1 2 1

TEMPORALLY DEPENDENT SPECIALIZED TWINE

Person_Id HairColor MemberSince Valid_From

1 Gray 2020-12-24 2020-12-24 With the twine, no join is
2 Brown 2011-12-13 2011-11-12 necessary. Instead a

3 Gray 2018-08-18 2001-01-01 windowed function is used

to find the value in effect.

select Person Id, HairColor, MemberSince, Valid From
from (
select
Person Id, Timeline, Timepoint as MemberSince,
LAG(HairColor, 1) over (partition by Person Id order by Timepoint, Timeline) as HairColor,
LAG(Timepoint, 1) over (partition by Person Id order by Timepoint, Timeline) as Valid From
from (
select Person Id, cast(l as tinyint) as Timeline, Valid From as Timepoint, HairColor
from HAIR COLOR
union all
select Person Id, cast(2 as tinyint) as Timeline, MemberSince as Timepoint, null
from PERSON
) timelines
) twine Valid_To is never used in a twine!
where twine.Timeline = 2

TEMPORALLY DEPENDENT OUTER JOIN

PERSON

1 1999-12-31 (0,1) to (0,*)

<
2 NULL
3 2018-08-18

drop table if exists PERSON;

create table PERSON (
Person Id int not null primary key,
MemberSince date null

)i

insert into PERSON values

(1, '1999-12-31'), (2, null), (3, '2018-08-18"');

>

HAIR_COLOR
1 Blonde 2001-01-01
1 Gray 2020-12-24
2 Brown 2002-02-02
2 Purple 2011-11-11
2 Brown 2011-11-12

drop table if exists HAIR_COLOR;

create table HAIR COLOR (
Person Id int not null foreign key references PERSON (Person Id),
HairColor varchar(42) not null,
Valid From date not null,

primary key (Person Id, Valid From)

)i

insert into HAIR COLOR values

(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24"),

(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11"), (2, 'Brown',

'2011-11-12");

select
p.Person_Id,
case
when p.MemberSince is null then 'Unknown (non-member)’
when hc exist.Person Id is null then 'Unknown (person)’

when hc.HairColor is null then 'Unknown (timepoint)’ ‘\\\\\\ There are now three

lse hc.HairCol :
eng se hc.HairColor reasons for why the hair
4

p.MemberSince, hc.Valid From, hc.Valid To color may be unknown.
from PERSON p
left join (
select
Person Id, HairColor, Valid From,
LEAD(Valid From, 1, '9999-12-31")
over (partition by Person Id order by Valid From) as Valid To
from HAIR COLOR
) hc
on hc.Person Id = p.Person_Id
and hc.Valid From <= p.MemberSince
and hc.Valid To > p.MemberSince
left join (
select distinct Person Id
from HAIR COLOR
) hc_exist
on hc exist.Person Id = p.Person Id;

select

Person_Id, An additional column is

case
when MemberSince is null then 'Unknown (non-member)’ necessary for checking the
when hc _exist = 0 then 'Unknown (person)’ existence of a Person_Id in
when HairColor is null then 'Unknown (timepoint)’
olse HairColor the HAIR_COLOR table.

end,

MemberSince, Valid From

from (
select

Person Id, Timeline, Timepoint as MemberSince,
MAX (case when Timeline = 1 then 1 else 0 end) over (partition by Person Id) as hc exist,
LAG(HairColor, 1) over (partition by Person Id order by Timepoint, Timeline) as HairColor,
LAG(Timepoint, 1) over (partition by Person Id order by Timepoint, Timeline) as Valid From
from (
select Person Id, 1 as Timeline, Valid From as Timepoint, HairColor from HAIR COLOR
union all
select Person Id, 2 as Timeline, MemberSince as Timepoint, null from PERSON
) timelines
) twine
where twine.Timeline = 2

TEMPORALLY DEP. OUTER JOIN VS SPEC. TWINE

Query 1: Query cost (relative to the batch):

1 000 000 «— 4 000 000

63%

select p.Person_ Id, hc.HairColor, p.MemberSince, hc.Valid From into #outerjoin from PERSON p left join (select Person_ Id,

HairColor, Valid From..
—x A CE o
> = s = (& —
TsaL Parallelism Table Insert Hash Match Clustered Index S..
(Gather Streams) [#outerjoin] (Left Outer Join) [PERSON] . [PK__ PER..
SELECT INTO Cost: 2 % Cost: 55 % Cost: 2 % Cost: 3 %
Cost: 0 % 0.358s 0.414s 0.060s 0.013s
1000000 of 1000000 of 1000000 of 1000000 of

3959140 (25%)

3959140 (25%)

3959140 (25%)

1000000 (100%)

r'[?:

il

Compute Scalar Compute Scalar Window Aggregate Sort
Cost: 0 % Cost: 0 % Cost: 0 % Cost: 16 %

0.001s 0.003s 0.006s 0.169s
3959135 of 39591335 of 3959135 of 3959135 of

3959140 (99%) 3959140 (99%) 3959140 (99%) 3959140 (99%)

|
e
Clustered Index S..
[HAIR COLOR] . [PK ..
Cost: 22 %
0.091s
3959135 of
3959140 (99%)

Query 2: Query cost (relative to the batch):

37%

select Person Id, HairColor, MemberSince, Valid From into #twine from (select Person Id, Timeline, Timepoint as MemberSince, LAG(HairColor,

1)..
) e ‘ 1
- \
= the ¥ i)e a1l 1 | B ‘._li::
. - = & £ 15 L > =
Parallelism Table Insert . . X Clustered Index S..
T-SQL (Gath St) [$twi] Filter Window Aggregate Sort Concatenation Compute Scalar [HATR COLOR] . [PK
sarher stredns wne Cost: 0 % Cost: 1 % Cost: 33 % Cost: 0 % Cost: 0 % 2 TR
SELECT INTO Cost: 1 % Cost: 23 % 0.004 0.007 0.238 0.000 0.000 Cost: 37 %
Cost: 0 % 0.394s 0.434s 1006000S £ 4955135S £ 4955;13=S £ 495§1553 £ 3955135S £ 0.088s
(o] o] 2 O o (o]
1000000 of 1000000 of 3959135 of
© © 1000000 (100%) 4959140 (99%) 4959140 (99%) N
1000000 (100%)

1000000 (100%)

4959140 (99%) 3959140 (99%)

r['?:

Compute Scalar
Cost: 0 %
0.000s
1000000 of
1000000 (100%)

3959140 (99%)

o
—
Clustered Index S..
[PERSON] . [PK__ PER..
Cost: 5 %
0.014s
1000000 of
1000000 (100%)

TEMPORALLY DEP. INNER JOIN VS SPEC. TWINE

1 000 000 «— 4 000 000

Query 1: Query cost (relative to the batch): ©63%

select p.Person Id, hc.HairColor, p.MemberSince, hc.Valid From into #innerjoin from PERSON p join (select Person Id, HairColor, Valid From, LEA..

= |
—§ Iha T ah
£ e b= (b= —
TsaL Parallelism Table Insert Hash Match Clustered Index S..
(Gather Streams) [#innerjoin] (Inner Join) [PERSON] . [PK PER..
SELECT INTO Cost: 2 % Cost: 55 % Cost: 2 % Cost: 3 %
Cost: 0 % 0.437s 0.488s 0.043s 0.015s
734367 of 734367 of 734367 of 1000000 of
3959140 (18%) 3959140 (18%) 3959140 (18%) 1000000 (100%)
, |
= Tl el
. T Clustered Index S..
Compute Scalar Window Aggregate Sort [HAIR COLOR].[PK
Cost: 0 % Cost: 0 % Cost: 16 % C_ e 22.0 =
0.003s 0.006s 0.325s ost: ©
3959135 of 3959135 of 3959135 of 0.097s
o o o
3959135 of
3959140 (99%) 3959140 (99%) 3959140 (99%) N

3959140 (99%)

Query 2: Query cost (relative to the batch): 37%
select Person Id, HairColor, MemberSince, Valid From into #twine from

(select Person Id, Timeline, Timepoint as MemberSince, LAG(HairColor, 1)..
H |
=5 \
= the KA e |‘z‘,l | i | 2 ‘._'l::
A = T = L £ . .
Parallelism Table Insert) . . Clustered Index S..
T-sQL . Filter Window Aggregate Sort Concatenation Compute Scalar
(Gather Streams) [#twine] [HAIR COLOR].[PK ..
Cost: 0 % Cost: 1 % Cost: 33 % Cost: 0 % Cost: 0 % — -
SELECT INTO Cost: 1 % Cost: 23 % 0.004 0.007 0245 0.000 0.000 Cost: 37 %
Cost: 0% 0.397s 0.4423 100(.)000S £ 4955;135S £ 49§§13<S £ 495é135s £ 3955135S £ 0.088s
1000000 of 1000000 of 1000000 (1;0°) 4959140 (;;°) 4959140‘};2°) 4959140 (;;°) 3959140 (;;°) 3959135 of
1000000 (100%) 1000000 (100%) N N ° N °

3959140 (99%)

|
= g
= b=
E Clustere‘: Index S..

Compute Scalar
[PERSON] . [PK PER..

Cost: 0 % c * 5 2
0.000s oSk v =

1000000 of 0.014s
1000000 of

1000000 (100%) 1000000 (100%)

THE POSSIBLE DOWNSIDE OF THE TWINE

1 000 000 «— 4 000 000

Query 1: Query cost (relative to the batch): ©63%

select p.Person Id, hc.HairColor, p.MemberSince, hc.Valid From into #innerjoin from PERSON p join (select

Person Id, HairColor, Valid From, LEA..
= |
4 | el ah
> = e b= (b= Nl —
TsaL Parallelism Table Insert Hash Match Clustered Index S..
(Gather Streams) [#innerjoin] (Inner Join) [PERSON] . [PK PER..
SELECT INTO Cost: 2 % Cost: 55 % Cost: 2 % Cost: 3 %
Cost: 0 % 0.437s 0.488s 0.043s 0.015s
734367 of 734367 of 734367 of 1000000 of
3859140 (18%) 3959140 (18%) 3959140 (18%) 1000000 (100%)
, |
= 21l ofn
[Zx —
X T Clustered Index S..
Compute Scalar Window Aggregate Sort [HAIR COLOR].[PK
Cost: 0 % Cost: 0 % Cost: 16 % C_ e 22.0 =
0.003s 0.0063 0.325s Og oS
- s
3959135 of 3959135 of 3959135 of
3959135 of
0 % % %
3959140 (99%) 3959140 (99%) 3959140 (99%) 3959140 (99%)
Query 2: Query cost (relative to the batch): 37%
select Person Id, HairColor, MemberSince, Valid From into #twine from (self#gct Person Id, yneline, Timepoint as MemberSince, LAG(HairColor, 1)..
—4 ra !
= \
£ the |Y’| Y- |§J| i | B gj;
. & = & L > = \ .
Parallelism Table Insert) . . Clustered Index S..
T-sQL . Filter Window Aggregfte Sort atenation Compute Scalar
(Gather Streams) [#twine] . . [HAIR COLOR].[PK ..
Cost: 0 % Cost: 1 % Cost: 33 % st: 0 % Cost: 0 % — -
SELECT INTO Cost: 1 % Cost: 23 % 0.004 0.007 5. 242 0.000 0.000 Cost: 37 %
Cost: 0% 0.397s 0.4423 100(.)000S £ 4955;135s £ 4955135S £ 95;1135s £ 3955135S £ 0.088s
1000000 of 1000000 of 1000000 (130°) 4959140 (;;°) 4959140 (;;°) 59140 (;;°) 3959140 (;;°) 3959135 of
1000000 (100%) 1000000 (100%) N N N N N

3959140 (99%)

Clustered Index S..

The twine algorithm trades

Compute Scalar [PERSON] . [PK PER
memory for performance Cost: 0 & Cost: 5 %
0.000s
1000000 of 0.014s
© 1000000 of

1000000 (100%) 1000000 (100%)

TEMPORALLY DEPENDENT OUTER JOIN

[REVISITED]
PURCHASE

PurchaseDate

1999-12-31
2001-02-03
2004-05-06 <

(*) to (0,%)

2023-11-28

1
1
1
2 2011-11-11
2
3 2018-08-18

drop table if exists PURCHASE;
create table PURCHASE (
Person Id int not null,
PurchaseDate date not null,
primary key (Person Id, PurchaseDate)
)i
insert into PURCHASE values
(1, '1999-12-31'), (1, '2001-02-03"), (1, '2004-05-06"'),
(2, '2011-11-11'), (2, '2023-11-28"), (3, '2018-08-18");

HAIR_COLOR
1 Blonde 2001-01-01
1 Gray 2020-12-24
2 Brown 2002-02-02
2 Purple 2011-11-11
2 Brown 2011-11-12

drop table if exists HAIR COLOR;

create table HAIR COLOR (
Person Id int not null foreign key references PERSON (Person Id),
HairColor varchar(42) not null,
Valid From date not null,

primary key (Person Id, Valid From)

)i

insert into HAIR COLOR values

(1, 'Blonde', '2001-01-01"), (1, 'Gray', '2020-12-24"),

(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown',

'2011-11-12");

select
p.Person_1Id,
case

when hc _exist.Person Id is null then 'Unknown (person)’
when hc.HairColor is null then 'Unknown (timepoint)’

else hc.HairColor
end as HairColor,

p.PurchaseDate, hc.Valid From, hc.Valid To

from PURCHASE p
left join (
select

Person Id, HairColor, Valid From,
'9999-12-31")

LEAD(Valid From, 1,

over (partition by Person Id order by Valid From) as Valid To

from HAIR COLOR
) hc
on hc.Person_Id = p.Person_ Id
and hc.Valid From <= p.PurchaseDate
and hc.vValid To > p.PurchaseDate
left join (
select distinct Person_ Id
from HAIR COLOR
) hc_exist
on hc exist.Person Id = p.Person Id;

Person_ld

WNNR PR

HairColor

Unknown (timepoint)
Blonde

Blonde

Purple

Brown

Unknown (person)

PurchaseDate Valid_From

1999-12-31
2001-02-03
2004-05-06
2011-11-11
2023-11-28
2018-08-18

NULL
2001-01-01
2001-01-01
2011-11-11
2011-11-12
NULL

Valid_To
NULL
2020-12-24
2020-12-24
2011-11-12
9999-12-31
NULL

TEMPORALLY DEPENDENT OUTER JOIN
[REVISITED]

2001-02-03 2004-05-06
O O » PurchaseDate
(many)
2001-01-01 2020-12-24
® ® » Valid_From
Blonde Gray (many)
preceding timepoint in timeline 1
2001-01-01 2001-02-03 2004-05-06 2020-12-24
® O O ® » Twine

1 2 2 1

select
twine.Person_ Id,
case
when twine.hc _exist = 0 then
when hc.HairColor is null then
else hc.HairColor

'Unknown (person)’
'Unknown (timepoint)

14

end as HairColor,
twine.PurchaseDate, hc.Valid From
from (
select
Person Id, Timeline, Timepoint as PurchaseDate,
MAX (case when Timeline = 1 then 1 else 0 end)

Person_lId

W NDNRFR R PR

HairColor

Unknown (timepoint)
Blonde

Blonde

Purple

Brown

Unknown (person)

PurchaseDate Valid_From

1999-12-31
2001-02-03
2004-05-06
2011-11-11
2023-11-28
2018-08-18

NULL
2001-01-01
2001-01-01
2011-11-11
2011-11-12
NULL

over (partition by Person Id) as hc exist,
MAX (case when Timeline = 1 then Timepoint end)
over (partition by Person Id order by Timepoint)
from (
select Person Id,
union all
select Person_ Id,

1 as tinyint) as Timeline, Valid

) timelines
) twine
left join HAIR COLOR hc
on hc.Person Id = twine.Person Id <

and hc.Valid From = twine.Valid From
where twine.Timeline = 2

as Valid_ From

From as Timepoint from HAIR COLOR

An additional join is now
necessary after finding the
timepoint from timeline 1

2 as tinyint) as Timeline, PurchaseDate as Timepoint from PURCHASE

TEMPORALLY DEP. JOIN VS GENERALIZED TWINE

4 000 000 «— 4000 000

Query 1l: Query cost (relative to the batch)
select p.Person Id, case when hc exist.PersO%eldls null then 'Unknown (person)' when hc.HairColor is null then 'Unknown (timepoint)' else hc.Ha..
- = I
4 e o oz Bt ety
TsaL Parallelism Table Insert F Hash Match Parallelism Stream Aggregate r Clustered Index S..
(Gather Streams) [#manyjoin] E (Right Outer Join) (Distribute Strea.. (Aggregate) [HATR COLOR] . [PK ..
SELECT INTO Cost: 2 % Cost: 62 % Compute Scalar Cost: 12 % Cost: 0 % Cost: 0 % Compute Scalar Cost: 0 %
Cost: 0 % 0.533s 0.611ls Cost: 0 % 0.273s 0.000s 0.000s Cost: 0 % 0.000s
3999211 of 3999211 of 3999211 of 16 of 2 of 5 of
3999210 (100%) 3999210 (100%) 3999210 (100%) 2 (800%) 2 (100%) 5 (100%)
i
Hash Match Parallelism r r
(Right Outer Join) (Distribute Strea..
Cost: 12 % Cost: % Compute Scalar Compute Scal
s 0.000s Cost: 0 % Cost: 0 %
of 40 of
l 100%) 5 (800%)
< >
Query 2: Query cost (relative to the batch): 51% e
select twine.Person Id, case when twine.hc exist = 0 then rColor is null then 'Unknown (timepoint)' else hc.HairCo..
-‘: '
- e = E s
Parallelism Table Insert Hash Match Clustered Index S..
T-SQL . Compute Scalar) .
(Gather Streams) [#twine] Cost: 0 % (Right Outer Join) [HAIR_COLOR].[PK ..
SELECT INTO Cost: 2 % Cost: 54 % 0.017s Cost: 1 % Cost: 0 %
Cost: 0 % 0.576s 0.730s 3999211 of 0.017s 0.000s
3999211 of 3999211 of 3999210 (100%) 3999211 of 5 of
3999210 (100%) 3999210 (100%) 3999210 (100%) 5 (100%)
A
K2 (& 21
Filter Window Aggregate Compute Scalar Sort Win
Cost: 0 % Cost: 0 % Cost: 0 % Cost: 15 %
0.002s 0.013s 0.002s 0.168s
3999211 of 3999216 of 3999216 of 3999216 of
3999210 (100%) 3999220 (99%) 3999220 (99%) 3999220 (99%) 3¢

The additional join can actually be

select avoided, but this query is slightly
Person Id, HairColor, PurchaseDate, Valid From slower than the one with the join.
from (
select /

Person Id, Timeline, PurchaseDate, Valid From,
MAX (HairColor) over (partition by Person Id, Valid From) as HairColor
from (
select
Person Id, Timeline, Timepoint as PurchaseDate,
MAX (case when Timeline = 1 then Timepoint end)
over (partition by Person Id order by Timepoint) as Valid From,
case
when Timepoint = MAX(case when Timeline = 1 then Timepoint end)
over (partition by Person Id order by Timepoint)
then HairColor
end as HairColor
from (
select Person Id, 1 as Timeline, Valid From as Timepoint, HairColor from HAIR COLOR
union all
select Person Id, 2 as Timeline, PurchaseDate as Timepoint, null from PURCHASE
) timelines
) twine
)t
where t.Timeline = 2

drop table if exists BEARD_COLOR;
create table BEARD_COLOR (
Person Id int not null,
BeardColor varchar(42) not null,
Valid From date not null,
primary key (Person Id, Valid From)
)i
insert into BEARD_COLOR values
(1, 'Black', '2010-10-10"),

(2, 'Blue', '2010-10-10'), (2, 'Gray', '2011-12-13");

PurchaseDate

1999-12-31 4
2001-02-03
2004-05-06

(*) to (0,%)

2023-11-28

1
1
1
2 2011-11-11
2
3 2018-08-18

drop table if exists PURCHASE;
create table PURCHASE (

Person_Id int not null,

PurchaseDate date not null,

primary key (Person_ Id, PurchaseDate)
)i
insert into PURCHASE values
(1, '1999-12-31'), (1, '2001-02-03'), (1,
(2, '2011-11-11'), (2, '2023-11-28"'), (3,

'2004-05-06"),
'2018-08-18");

>

MULTIPLE TABLES

BeardColor Valid_From

2010-10-10
2010-10-10

1
2

2

Black
Blue

Gray

2011-12-13

Blonde

1

1
2
2
2

Gray

Brown

Purple

Brown

drop table if exists HAIR_COLOR;
create table HAIR COLOR (
Person Id int not null foreign key references PERSON (Person_Id),
HairColor varchar(42) not null,
Valid From date not null,
primary key (Person Id, Valid From)

)7

insert into HAIR COLOR values

(1,
(2,

'Blonde’,
'Brown',

'2001-01-01"),
'2002-02-02"),

(1,
(2,

'Gray',
'Purple’,

2001-01-01

2020-12-24

2002-02-02
2011-11-11
2011-11-12

'2020-12-24"),
'2011-11-11"),

(2,

'Brown',

'2011-11-12");

select
p.Person_Id,
p.PurchaseDate,
hc.HairColor, hc.Valid From as hc_Valid From,
bc.BeardColor, bc.Valid From as bc Valid From
from PURCHASE p
left join (
select Person Id, HairColor, Valid From,
LEAD(Valid From, 1, '9999-12-31') over
(partition by Person Id order by Valid From) as Valid To
from HAIR COLOR
) hc

on hc.person Id = p.Person_Id Note that comparison here may yield undesirable

and hc.Valid From <= p.PurchaseDate <«) I . .
and hc.Valid To > p.PurchaseDate results if the granularities of the time types differ.

left join (

select Person Id, BeardColor, Valid From,

LEAD(Valid From, 1, '9999-12-31") over
(partition by Person Id order by Valid From) as Valid To

from BEARD_ COLOR
) bc
on bc.Person_Id = p.Person_Id
and bc.Valid From <= p.PurchaseDate <«
and bc.Valid To > p.PurchaseDate

select
twine.Person Id,
twine.PurchaseDate,

hc.HairColor, hc.Valid From as hc Valid From,
bc.BeardColor, bc.Valid From as bc Valid From

from (

select Person Id, Timeline, Timepoint as PurchaseDate,

MAX (case when
(partition
MAX (case when
(partition
from (
select Person Id,
union all

Timeline = 1 then Timepoint end
by Person Id order by Timepoint
Timeline = 2 then Timepoint end
by Person Id order by Timepoint

)

)
)
)

Multiple timelines can be resolved
in a single twine.

over
as hc Valid From,
over

as bc _Valid From

1 as Timeline, Valid From as Timepoint from HAIR COLOR

select Person Id, 2 as Timeline, Valid From as Timepoint from BEARD COLOR

union all

select Person Id, 0 as Timeline, PurchaseDate as Timepoint from PURCHASE

) timelines
) twine
left join HAIR COLOR hc
on hc.Person Id = twine.Person Id
and hc.Valid From = twine.hc Valid From
left join BEARD COLOR bc
on bc.Person Id = twine.Person_ Id
and bc.Valid From = twine.bc Valid From
where twine.Timeline = 0

Note that the union here may fail or implicitly

convert time types if the time types differ. Cast to

the most granular type if necessary.

CONCLUSIONS

« When you are using twines no end-dating is necessary, as is the case with
insert-only data warehouses.

e If you have a temporal one-to-many relationship, a specialized twine is
likely to yield the best performance.

e If you have a temporal many-to-many relationship, a generalized twine
might yield better performance.

e A single generalized twine can be extended to resolve multiple timelines
at once.

« Twines are worth testing if performance is an issue!

