
Temporal
joins
and
twines
Lars Rönnbäck
2023-11-28

https://www.anchormodeling.com/♫-lets-twine-again-♫/

https://www.researchgate.net/publication/330798405_Temporal_Dimensional_Modeling

https://www.anchormodeling.com/%E2%99%AB-lets-twine-again-%E2%99%AB/
https://www.researchgate.net/publication/330798405_Temporal_Dimensional_Modeling

Non–temporal inner join

Person_Id

1
2

3

Person_Id HairColor

1 Blonde
2 Brown

3 Gray

PERSON HAIR_COLOR

(1) to (1)

drop table if exists PERSON;
create table PERSON (
 Person_Id int not null primary key
);
insert into PERSON values (1), (2), (3);

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null primary key foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null
);
insert into HAIR_COLOR values (1, 'Blonde'), (2, 'Brown'), (3, 'Gray');

select *
from PERSON p
join HAIR_COLOR hc
on hc.Person_Id = p.Person_Id

Non–temporal outer join

Person_Id

1
2

3

Person_Id HairColor

1 Blonde
2 Brown

PERSON
HAIR_COLOR

(1) to (0,1)

drop table if exists PERSON;
create table PERSON (
 Person_Id int not null primary key
);
insert into PERSON values (1), (2), (3);

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null primary key foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null
);
insert into HAIR_COLOR values (1, 'Blonde'), (2, 'Brown');

select p.Person_Id, isnull(hc.HairColor, 'Unknown')
from PERSON p
left join HAIR_COLOR hc
on hc.Person_Id = p.Person_Id

Temporally independent inner join

Person_Id

1
2

3

Person_Id HairColor Valid_From

1 Blonde 2001-01-01
1 Gray 2020-12-24

2 Brown 2002-02-02

2 Purple 2011-11-11

2 Brown 2011-11-12

3 Gray 2001-01-01

PERSON

HAIR_COLOR

(1) to (*)

drop table if exists PERSON;
create table PERSON (
 Person_Id int not null primary key
);
insert into PERSON values (1), (2), (3);

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null,
 Valid_From date not null,
primary key (Person_Id, Valid_From)
);
insert into HAIR_COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),
(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown', '2011-11-12'),
(3, 'Gray', '2001-01-01');

Temporally independent inner join

select p.Person_Id, hc.HairColor, hc.Valid_From
from PERSON p
join (
 select *
 from HAIR_COLOR hc_sub
 where hc_sub.Valid_From = (
 select top 1 hc_at.Valid_From
 from HAIR_COLOR hc_at
 where hc_at.Person_Id = hc_sub.Person_Id
 and hc_at.Valid_From <= '2011-11-11’
 order by hc_at.Valid_From desc
)
) hc
on hc.Person_Id = p.Person_Id;

A temporally independent join can
be reduced to a non-temporal join by
first resolving the temporality of the
involved tables.

Person_Id	 HairColor		 Valid_From
1	 	 Blonde	 	 2001-01-01
2	 	 Purple	 	 2011-11-11
3	 	 Gray	 	 2001-01-01

What was the hair color of every person
on 11/11 of 2011?

Temporally independent outer join

Person_Id

1
2

3

Person_Id HairColor Valid_From

1 Blonde 2001-01-01
1 Gray 2020-12-24

2 Brown 2002-02-02

2 Purple 2011-11-11

2 Brown 2011-11-12

PERSON

HAIR_COLOR

(1) to (0,*)

drop table if exists PERSON;
create table PERSON (
 Person_Id int not null primary key
);
insert into PERSON values (1), (2), (3);

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null,
 Valid_From date not null,
primary key (Person_Id, Valid_From)
);
insert into HAIR_COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),
(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown', '2011-11-12');

Temporally independent outer join

select p.Person_Id, isnull(hc.HairColor, 'Unknown'), hc.Valid_From
from PERSON p
left join (
 select *
 from HAIR_COLOR hc_sub
 where hc_sub.Valid_From = (
 select top 1 hc_at.Valid_From
 from HAIR_COLOR hc_at
 where hc_at.Person_Id = hc_sub.Person_Id
 and hc_at.Valid_From <= '2001-12-31’
 order by hc_at.Valid_From desc
)
) hc
on hc.Person_Id = p.Person_Id;

A temporally independent join can
be reduced to a non-temporal join by
first resolving the temporality of the
involved tables.

Person_Id	 HairColor		 Valid_From
1	 	 Blonde	 	 2001-01-01
2	 	 Unknown		 NULL
3	 	 Unknown		 NULL

What was the hair color of every
person on 31/12 of 2001?

select
 p.Person_Id,
 case
 when hc_exist.Person_Id is null then 'Unknown (person)'
 when hc.HairColor is null then 'Unknown (timepoint)'
 else hc.HairColor
 end,
 hc.Valid_From
from PERSON p
left join (
 select *
 from HAIR_COLOR hc_sub
 where hc_sub.Valid_From = (
 select top 1 hc_at.Valid_From
 from HAIR_COLOR hc_at
 where hc_at.Person_Id = hc_sub.Person_Id
 and hc_at.Valid_From <= '2001-12-31’
 order by hc_at.Valid_From desc
)
) hc
on hc.Person_Id = p.Person_Id
left join (
 select distinct Person_Id
 from HAIR_COLOR
) hc_exist
on hc_exist.Person_Id = p.Person_Id;

Additional information is needed in
order to resolve the exact reason
why a hair color is unknown.

Temporally dependent inner join

Person_Id MemberSince

1 2020-12-24
2 2011-12-13

3 2018-08-18

Person_Id HairColor Valid_From

1 Blonde 2001-01-01
1 Gray 2020-12-24

2 Brown 2002-02-02

2 Purple 2011-11-11

2 Brown 2011-11-12

3 Gray 2001-01-01

PERSON

HAIR_COLOR

(1) to (*)

drop table if exists PERSON;
create table PERSON (
 Person_Id int not null primary key,
 MemberSince date null
);
insert into PERSON values
(1, '2020-12-24'), (2, '2011-12-13'),
(3, '2018-08-18');

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null,
 Valid_From date not null,
primary key (Person_Id, Valid_From)
);
insert into HAIR_COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),
(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown', '2011-11-12'),
(3, 'Gray', '2001-01-01');

Temporally dependent inner join

select p.Person_Id, hc.HairColor, p.MemberSince, hc.Valid_From, hc.Valid_To
from PERSON p
join (
 select
 Person_Id, HairColor, Valid_From,
 LEAD(Valid_From, 1, '9999-12-31') over (partition by Person_Id order by Valid_From) as Valid_To
 from HAIR_COLOR
) hc
on hc.Person_Id = p.Person_Id
and hc.Valid_From <= p.MemberSince
and hc.Valid_To > p.MemberSince

The temporally dependent join is not
reduced to a non-temporal join and
timepoints become a part of the join
condition.

Person_Id	 HairColor		 MemberSince 	 Valid_From	 Valid_To
1	 	 Gray	 	 2020-12-24	 2020-12-24	 9999-12-31
2	 	 Brown	 	 2011-12-13	 2011-11-12	 9999-12-31
3	 	 Gray	 	 2018-08-18	 2001-01-01	 9999-12-31

What was the hair color of every person when they became a member? Valid_To might already be
materialized depending on
the style of modeling

Temporally dependent join / twine

2009-09-09

2001-01-01 2020-12-24

Blonde Gray

MemberSince
(one)

Valid_From
(many)

separate
timelines

Temporally dependent join / twine

2009-09-09

2001-01-01 2020-12-24

Blonde Gray

separate
timelines

2001-01-01 2020-12-242009-09-09

MemberSince
(one)

Valid_From
(many)

1 12
Twine

Temporally dependent join / twine

2009-09-09

2001-01-01 2020-12-24

Blonde Gray

separate
timelines

2001-01-01 2020-12-242009-09-09

MemberSince
(one)

Valid_From
(many)

1 12
Twine

preceding timepoint in overlapping
numbered timelines

Temporally dependent SPECIALIZED twine

select Person_Id, HairColor, MemberSince, Valid_From
from (
 select
 Person_Id, Timeline, Timepoint as MemberSince,
 LAG(HairColor, 1) over (partition by Person_Id order by Timepoint, Timeline) as HairColor,
 LAG(Timepoint, 1) over (partition by Person_Id order by Timepoint, Timeline) as Valid_From
 from (
 select Person_Id, cast(1 as tinyint) as Timeline, Valid_From as Timepoint, HairColor
 from HAIR_COLOR
 union all
 select Person_Id, cast(2 as tinyint) as Timeline, MemberSince as Timepoint, null
 from PERSON
) timelines
) twine
where twine.Timeline = 2

With the twine, no join is
necessary. Instead a
windowed function is used
to find the value in effect.

Person_Id	 HairColor		 MemberSince 	 Valid_From
1	 	 Gray	 	 2020-12-24	 2020-12-24
2	 	 Brown	 	 2011-12-13	 2011-11-12
3	 	 Gray	 	 2018-08-18	 2001-01-01

Valid_To is never used in a twine!

Temporally dependent outer join

Person_Id HairColor Valid_From

1 Blonde 2001-01-01
1 Gray 2020-12-24

2 Brown 2002-02-02

2 Purple 2011-11-11

2 Brown 2011-11-12

PERSON

HAIR_COLOR

(0,1) to (0,*)

drop table if exists PERSON;
create table PERSON (
 Person_Id int not null primary key,
 MemberSince date null
);
insert into PERSON values
(1, '1999-12-31'), (2, null), (3, '2018-08-18');

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null,
 Valid_From date not null,
primary key (Person_Id, Valid_From)
);
insert into HAIR_COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),
(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown', '2011-11-12');

Person_Id MemberSince

1 1999-12-31
2 NULL

3 2018-08-18

select
 p.Person_Id,
 case
 when p.MemberSince is null then 'Unknown (non-member)’
 when hc_exist.Person_Id is null then 'Unknown (person)’
 when hc.HairColor is null then 'Unknown (timepoint)’
 else hc.HairColor
 end,
 p.MemberSince, hc.Valid_From, hc.Valid_To
from PERSON p
left join (
 select
 Person_Id, HairColor, Valid_From,
 LEAD(Valid_From, 1, '9999-12-31')
 over (partition by Person_Id order by Valid_From) as Valid_To
 from HAIR_COLOR
) hc
on hc.Person_Id = p.Person_Id
and hc.Valid_From <= p.MemberSince
and hc.Valid_To > p.MemberSince
left join (
 select distinct Person_Id
 from HAIR_COLOR
) hc_exist
on hc_exist.Person_Id = p.Person_Id;

There are now three
reasons for why the hair
color may be unknown.

select
 Person_Id,
 case
 when MemberSince is null then 'Unknown (non-member)’
 when hc_exist = 0 then 'Unknown (person)’
 when HairColor is null then 'Unknown (timepoint)’
 else HairColor
 end,
 MemberSince, Valid_From
from (
 select
 Person_Id, Timeline, Timepoint as MemberSince,
 MAX(case when Timeline = 1 then 1 else 0 end) over (partition by Person_Id) as hc_exist,
 LAG(HairColor, 1) over (partition by Person_Id order by Timepoint, Timeline) as HairColor,
 LAG(Timepoint, 1) over (partition by Person_Id order by Timepoint, Timeline) as Valid_From
 from (
 select Person_Id, 1 as Timeline, Valid_From as Timepoint, HairColor from HAIR_COLOR
 union all
 select Person_Id, 2 as Timeline, MemberSince as Timepoint, null from PERSON
) timelines
) twine
where twine.Timeline = 2

An additional column is
necessary for checking the
existence of a Person_Id in
the HAIR_COLOR table.

Temporally dep. outer join vs SPEC. twine

1 000 000 4 000 000

Temporally dep. inner join vs Spec. twine

1 000 000 4 000 000

The possible downside of the twine

The twine algorithm trades
memory for performance

1 000 000 4 000 000

Temporally dependent outer join
[revisited]

Person_Id HairColor Valid_From

1 Blonde 2001-01-01
1 Gray 2020-12-24

2 Brown 2002-02-02

2 Purple 2011-11-11

2 Brown 2011-11-12

PURCHASE
HAIR_COLOR

(*) to (0,*)

drop table if exists PURCHASE;
create table PURCHASE (
 Person_Id int not null,
 PurchaseDate date not null,
 primary key (Person_Id, PurchaseDate)
);
insert into PURCHASE values
(1, '1999-12-31'), (1, '2001-02-03'), (1, '2004-05-06'),
(2, '2011-11-11'), (2, '2023-11-28'), (3, '2018-08-18');

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null,
 Valid_From date not null,
primary key (Person_Id, Valid_From)
);
insert into HAIR_COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),
(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown', '2011-11-12');

Person_Id PurchaseDate

1 1999-12-31
1 2001-02-03

1 2004-05-06

2 2011-11-11

2 2023-11-28

3 2018-08-18

select
 p.Person_Id,
 case
 when hc_exist.Person_Id is null then 'Unknown (person)’
 when hc.HairColor is null then 'Unknown (timepoint)’
 else hc.HairColor
 end as HairColor,
 p.PurchaseDate, hc.Valid_From, hc.Valid_To
from PURCHASE p
left join (
 select
 Person_Id, HairColor, Valid_From,
 LEAD(Valid_From, 1, '9999-12-31')
 over (partition by Person_Id order by Valid_From) as Valid_To
 from HAIR_COLOR
) hc
on hc.Person_Id = p.Person_Id
and hc.Valid_From <= p.PurchaseDate
and hc.Valid_To > p.PurchaseDate
left join (
 select distinct Person_Id
 from HAIR_COLOR
) hc_exist
on hc_exist.Person_Id = p.Person_Id;

Person_Id	 HairColor	 	 PurchaseDate 	Valid_From	 Valid_To
1	 Unknown (timepoint)	 1999-12-31	 NULL	 NULL
1	 Blonde	 	 2001-02-03	 2001-01-01	 2020-12-24
1	 Blonde	 	 2004-05-06	 2001-01-01	 2020-12-24
2	 Purple	 	 2011-11-11	 2011-11-11	 2011-11-12
2	 Brown	 	 2023-11-28	 2011-11-12	 9999-12-31
3	 Unknown (person)	 2018-08-18	 NULL	 NULL

Temporally dependent outer join
[revisited]

2001-02-03

2001-01-01 2020-12-24

Blonde Gray

2001-01-01 2020-12-24

PurchaseDate
(many)

Valid_From
(many)

1 12
Twine

2004-05-06

2

2001-02-03

2004-05-06

preceding timepoint in timeline 1

select
 twine.Person_Id,
 case
 when twine.hc_exist = 0 then 'Unknown (person)’
 when hc.HairColor is null then 'Unknown (timepoint)’
 else hc.HairColor
 end as HairColor,
 twine.PurchaseDate, hc.Valid_From
from (
 select
 Person_Id, Timeline, Timepoint as PurchaseDate,
 MAX(case when Timeline = 1 then 1 else 0 end)
 over (partition by Person_Id) as hc_exist,
 MAX(case when Timeline = 1 then Timepoint end)
 over (partition by Person_Id order by Timepoint) as Valid_From
 from (
 select Person_Id, 1 as tinyint) as Timeline, Valid_From as Timepoint from HAIR_COLOR
 union all
 select Person_Id, 2 as tinyint) as Timeline, PurchaseDate as Timepoint from PURCHASE
) timelines
) twine
left join HAIR_COLOR hc
on hc.Person_Id = twine.Person_Id
and hc.Valid_From = twine.Valid_From
where twine.Timeline = 2

Person_Id	 HairColor	 	 PurchaseDate 	Valid_From
1	 Unknown (timepoint)	 1999-12-31	 NULL
1	 Blonde	 	 2001-02-03	 2001-01-01
1	 Blonde	 	 2004-05-06	 2001-01-01
2	 Purple	 	 2011-11-11	 2011-11-11
2	 Brown	 	 2023-11-28	 2011-11-12
3	 Unknown (person)	 2018-08-18	 NULL

An additional join is now
necessary after finding the
timepoint from timeline 1

Temporally dep. join vs generalized twine

4 000 000 4 000 000

YMMV!

select
 Person_Id, HairColor, PurchaseDate, Valid_From
from (
 select
 Person_Id, Timeline, PurchaseDate, Valid_From,
 MAX(HairColor) over (partition by Person_Id, Valid_From) as HairColor
 from (
 select
 Person_Id, Timeline, Timepoint as PurchaseDate,
 MAX(case when Timeline = 1 then Timepoint end)
 over (partition by Person_Id order by Timepoint) as Valid_From,
 case
 when Timepoint = MAX(case when Timeline = 1 then Timepoint end)
 over (partition by Person_Id order by Timepoint)
 then HairColor
 end as HairColor
 from (
 select Person_Id, 1 as Timeline, Valid_From as Timepoint, HairColor from HAIR_COLOR
 union all
 select Person_Id, 2 as Timeline, PurchaseDate as Timepoint, null from PURCHASE
) timelines
) twine
) t
where t.Timeline = 2

The additional join can actually be
avoided, but this query is slightly
slower than the one with the join.

Person_Id HairColor Valid_From

1 Blonde 2001-01-01
1 Gray 2020-12-24

2 Brown 2002-02-02

2 Purple 2011-11-11

2 Brown 2011-11-12

(*) to (0,*)

drop table if exists PURCHASE;
create table PURCHASE (
 Person_Id int not null,
 PurchaseDate date not null,
 primary key (Person_Id, PurchaseDate)
);
insert into PURCHASE values
(1, '1999-12-31'), (1, '2001-02-03'), (1, '2004-05-06'),
(2, '2011-11-11'), (2, '2023-11-28'), (3, '2018-08-18');

drop table if exists HAIR_COLOR;
create table HAIR_COLOR (
 Person_Id int not null foreign key references PERSON (Person_Id),
 HairColor varchar(42) not null,
 Valid_From date not null,
primary key (Person_Id, Valid_From)
);
insert into HAIR_COLOR values
(1, 'Blonde', '2001-01-01'), (1, 'Gray', '2020-12-24'),
(2, 'Brown', '2002-02-02'), (2, 'Purple', '2011-11-11'), (2, 'Brown', '2011-11-12');

Person_Id PurchaseDate

1 1999-12-31
1 2001-02-03

1 2004-05-06

2 2011-11-11

2 2023-11-28

3 2018-08-18

Person_Id BeardColor Valid_From

1 Black 2010-10-10
2 Blue 2010-10-10

2 Gray 2011-12-13

drop table if exists BEARD_COLOR;
create table BEARD_COLOR (
 Person_Id int not null,
 BeardColor varchar(42) not null,
 Valid_From date not null,
 primary key (Person_Id, Valid_From)
);
insert into BEARD_COLOR values
(1, 'Black', '2010-10-10'),
(2, 'Blue', '2010-10-10'), (2, 'Gray', '2011-12-13');

MULTIPLE TABLES

select
 p.Person_Id,
 p.PurchaseDate,
 hc.HairColor, hc.Valid_From as hc_Valid_From,
 bc.BeardColor, bc.Valid_From as bc_Valid_From
from PURCHASE p
left join (
 select Person_Id, HairColor, Valid_From,
 LEAD(Valid_From, 1, '9999-12-31') over
 (partition by Person_Id order by Valid_From) as Valid_To
 from HAIR_COLOR
) hc
on hc.Person_Id = p.Person_Id
and hc.Valid_From <= p.PurchaseDate
and hc.Valid_To > p.PurchaseDate
left join (
 select Person_Id, BeardColor, Valid_From,
 LEAD(Valid_From, 1, '9999-12-31') over
 (partition by Person_Id order by Valid_From) as Valid_To
 from BEARD_COLOR
) bc
on bc.Person_Id = p.Person_Id
and bc.Valid_From <= p.PurchaseDate
and bc.Valid_To > p.PurchaseDate

Note that comparison here may yield undesirable
results if the granularities of the time types differ.

select
 twine.Person_Id,
 twine.PurchaseDate,
 hc.HairColor, hc.Valid_From as hc_Valid_From,
 bc.BeardColor, bc.Valid_From as bc_Valid_From
from (
 select Person_Id, Timeline, Timepoint as PurchaseDate,
 MAX(case when Timeline = 1 then Timepoint end) over
 (partition by Person_Id order by Timepoint) as hc_Valid_From,
 MAX(case when Timeline = 2 then Timepoint end) over
 (partition by Person_Id order by Timepoint) as bc_Valid_From
 from (
 select Person_Id, 1 as Timeline, Valid_From as Timepoint from HAIR_COLOR
 union all
 select Person_Id, 2 as Timeline, Valid_From as Timepoint from BEARD_COLOR
 union all
 select Person_Id, 0 as Timeline, PurchaseDate as Timepoint from PURCHASE
) timelines
) twine
left join HAIR_COLOR hc
on hc.Person_Id = twine.Person_Id
and hc.Valid_From = twine.hc_Valid_From
left join BEARD_COLOR bc
on bc.Person_Id = twine.Person_Id
and bc.Valid_From = twine.bc_Valid_From
where twine.Timeline = 0

Note that the union here may fail or implicitly
convert time types if the time types differ. Cast to
the most granular type if necessary.

Multiple timelines can be resolved
in a single twine.

Conclusions

• When you are using twines no end-dating is necessary, as is the case with
insert-only data warehouses.
• If you have a temporal one-to-many relationship, a specialized twine is

likely to yield the best performance.
• If you have a temporal many-to-many relationship, a generalized twine

might yield better performance.
• A single generalized twine can be extended to resolve multiple timelines

at once.

• Twines are worth testing if performance is an issue!

